## A universal property of reflexive hereditarily indecomposable Banach spaces

HTML articles powered by AMS MathViewer

- by Spiros A. Argyros PDF
- Proc. Amer. Math. Soc.
**129**(2001), 3231-3239 Request permission

## Abstract:

It is shown that every separable Banach space $X$ universal for the class of reflexive Hereditarily Indecomposable space contains $C[0,1]$ isomorphically and hence it is universal for all separable spaces. This result shows the large variety of reflexive H.I. spaces.## References

- S.A. Argyros and V. Felouzis. Interpolating Hereditarily Indecomposable Banach spaces, Journal of AMS 13 (2000) 243-294.
- J. Bourgain,
*On separable Banach spaces, universal for all separable reflexive spaces*, Proc. Amer. Math. Soc.**79**(1980), no. 2, 241–246. MR**565347**, DOI 10.1090/S0002-9939-1980-0565347-4 - W. T. Gowers and B. Maurey,
*The unconditional basic sequence problem*, J. Amer. Math. Soc.**6**(1993), no. 4, 851–874. MR**1201238**, DOI 10.1090/S0894-0347-1993-1201238-0 - Joram Lindenstrauss and Lior Tzafriri,
*Classical Banach spaces. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR**0500056** - J. Lindenstrauss. On non-separable reflexive Banach spaces, Bulletin AMS 72(1996), 967-970.
- R. Neidinger. Properties of Tauberian Operators, Dissertation. University of Texas at Austin, 1984.
- W. Szlenk,
*The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces*, Studia Math.**30**(1968), 53–61. MR**227743**, DOI 10.4064/sm-30-1-53-61

## Additional Information

**Spiros A. Argyros**- Affiliation: Department of Mathematics, Athens University, Athens, Greece
- Address at time of publication: Department of Mathematics, National Technical University of Athens, Athens 15780, Greece
- MR Author ID: 26995
- Email: sargyros@math.uoa.gr, sargyros@math.ntua.gr
- Received by editor(s): March 5, 2000
- Published electronically: April 16, 2001
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**129**(2001), 3231-3239 - MSC (2000): Primary 46B03, 46B70, 46B10; Secondary 03E10, 03E15
- DOI: https://doi.org/10.1090/S0002-9939-01-05980-9
- MathSciNet review: 1844998