## Defending the negated Kaplansky conjecture

HTML articles powered by AMS MathViewer

- by Akira Masuoka PDF
- Proc. Amer. Math. Soc.
**129**(2001), 3185-3192 Request permission

## Abstract:

To answer in the negative a conjecture of Kaplansky, four recent papers independently constructed four families of Hopf algebras of fixed finite dimension, each of which consisted of infinitely many isomorphism classes. We defend nevertheless the negated conjecture by proving that the Hopf algebras in each family are cocycle deformations of each other.## References

- N. Andruskiewitsch and H.-J. Schneider,
*Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$*, J. Algebra**209**(1998), no. 2, 658–691. MR**1659895**, DOI 10.1006/jabr.1998.7643 - M. Beattie, S. Dăscălescu, and L. Grünenfelder,
*On the number of types of finite-dimensional Hopf algebras*, Invent. Math.**136**(1999), no. 1, 1–7. MR**1681117**, DOI 10.1007/s002220050302 - Yukio Doi,
*Braided bialgebras and quadratic bialgebras*, Comm. Algebra**21**(1993), no. 5, 1731–1749. MR**1213985**, DOI 10.1080/00927879308824649 - Shlomo Gelaki,
*Pointed Hopf algebras and Kaplansky’s 10th conjecture*, J. Algebra**209**(1998), no. 2, 635–657. MR**1659891**, DOI 10.1006/jabr.1998.7513 - Eric Müller, Finite subgroups of the quantum general linear group, Proc. London Math. Soc.
**81**(2000), no. 1, 190–210. - David E. Radford,
*On Kauffman’s knot invariants arising from finite-dimensional Hopf algebras*, Advances in Hopf algebras (Chicago, IL, 1992) Lecture Notes in Pure and Appl. Math., vol. 158, Dekker, New York, 1994, pp. 205–266. MR**1289427** - Peter Schauenburg,
*Hopf bi-Galois extensions*, Comm. Algebra**24**(1996), no. 12, 3797–3825. MR**1408508**, DOI 10.1080/00927879608825788 - Hans-Jürgen Schneider,
*Some remarks on exact sequences of quantum groups*, Comm. Algebra**21**(1993), no. 9, 3337–3357. MR**1228767**, DOI 10.1080/00927879308824733 - Mitsuhiro Takeuchi,
*Some topics on $\textrm {GL}_q(n)$*, J. Algebra**147**(1992), no. 2, 379–410. MR**1161300**, DOI 10.1016/0021-8693(92)90212-5 - Mitsuhiro Takeuchi,
*Cocycle deformations of coordinate rings of quantum matrices*, J. Algebra**189**(1997), no. 1, 23–33. MR**1432363**, DOI 10.1006/jabr.1996.6878

## Additional Information

**Akira Masuoka**- Affiliation: Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- MR Author ID: 261525
- Email: akira@math.tsukuba.ac.jp
- Received by editor(s): August 4, 1999
- Received by editor(s) in revised form: March 22, 2000
- Published electronically: May 10, 2001
- Communicated by: Ken Goodearl
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**129**(2001), 3185-3192 - MSC (2000): Primary 16W30, 16W35
- DOI: https://doi.org/10.1090/S0002-9939-01-06005-1
- MathSciNet review: 1844991

Dedicated: Dedicated to Professor Yukio Tsushima on his sixtieth birthday