Minimal sufficiency of order statistics in convex models
HTML articles powered by AMS MathViewer
- by Lutz Mattner
- Proc. Amer. Math. Soc. 129 (2001), 3401-3411
- DOI: https://doi.org/10.1090/S0002-9939-01-06006-3
- Published electronically: May 10, 2001
- PDF | Request permission
Abstract:
Let $\mathcal {P}$ be a convex and dominated statistical model on the measurable space $(\mathcal {X},\mathcal {A})$, with $\mathcal {A}$ minimal sufficient, and let $n\in \mathbb {N}$. Then $\mathcal {A}^{\otimes n}_{\operatorname {sym}}$, the $\sigma$-algebra of all permutation invariant sets belonging to the $n$-fold product $\sigma$-algebra $\mathcal {A}^{\otimes n}$, is shown to be minimal sufficient for the corresponding model for $n$ independent observations, $\mathcal {P}^n = \left \{P^{\otimes n}:P\in \mathcal {P}\right \}$. The main technical tool provided and used is a functional analogue of a theorem of Grzegorek (1982) concerning generators of $\mathcal {A}^{\otimes n}_{\operatorname {sym}}$.References
- J. L. Doob, Measure theory, Graduate Texts in Mathematics, vol. 143, Springer-Verlag, New York, 1994. MR 1253752, DOI 10.1007/978-1-4612-0877-8
- Richard M. Dudley, Real analysis and probability, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1989. MR 982264
- E. Grzegorek, Symmetric $\sigma$-fields of sets and universal null sets, Measure theory, Oberwolfach 1981 (Oberwolfach, 1981) Lecture Notes in Math., vol. 945, Springer, Berlin-New York, 1982, pp. 101–109. MR 675273
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Marie-Françoise Le Bihan, Monique Littaye-Petit, and Jean-Luc Petit, Exhaustivité par paire, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1753–A1756 (French). MR 267670
- D. Landers, Sufficient and minimal sufficient $\sigma$-fields, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 197–207. MR 322995, DOI 10.1007/BF00536559
- Harald Luschgy, Sur l’existence d’une plus petite sous-tribu exhaustive par paire, Ann. Inst. H. Poincaré Sect. B (N.S.) 14 (1978), no. 4, 391–398 (1979) (French, with English summary). MR 523218
- Avi Mandelbaum and Ludger Rüschendorf, Complete and symmetrically complete families of distributions, Ann. Statist. 15 (1987), no. 3, 1229–1244. MR 902255, DOI 10.1214/aos/1176350502
- L. Mattner, Complete order statistics in parametric models, Ann. Statist. 24 (1996), no. 3, 1265–1282. MR 1401849, DOI 10.1214/aos/1032526968
- Mattner, L. (1999). Sufficiency, exponential families, and algebraically independent numbers. Math. Meth. Statist. 8, 397-406.
- Mattner, L. (2000). Minimal sufficienct statistics in location-scale parameter models. Bernoulli 6, 1121-1134.
- Johann Pfanzagl, Parametric statistical theory, De Gruyter Textbook, Walter de Gruyter & Co., Berlin, 1994. With the assistance of R. Hamböker. MR 1291393, DOI 10.1515/9783110889765
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Eberhard Siebert, Pairwise sufficiency, Z. Wahrsch. Verw. Gebiete 46 (1979), no. 3, 237–246. MR 521703, DOI 10.1007/BF00538112
- Torgersen, E. (1965). Minimal sufficiency of order statistics in the case of translation- and scale parameters. Skand. Aktuarietidsskrift 48, 16-21.
- Erik Torgersen, Comparison of statistical experiments, Encyclopedia of Mathematics and its Applications, vol. 36, Cambridge University Press, Cambridge, 1991. MR 1104437, DOI 10.1017/CBO9780511666353
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
Bibliographic Information
- Lutz Mattner
- Affiliation: Department of Statistics, University of Leeds, Leeds LS2 9JT, United Kingdom
- MR Author ID: 315405
- Email: mattner@amsta.leeds.ac.uk
- Received by editor(s): November 13, 1999
- Received by editor(s) in revised form: March 30, 2000
- Published electronically: May 10, 2001
- Communicated by: Wei Y. Loh
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 3401-3411
- MSC (2000): Primary 62B05, 62G30, 28A35
- DOI: https://doi.org/10.1090/S0002-9939-01-06006-3
- MathSciNet review: 1845019