## A generalization of the Lipschitz summation formula and some applications

HTML articles powered by AMS MathViewer

- by Paul C. Pasles and Wladimir de Azevedo Pribitkin PDF
- Proc. Amer. Math. Soc.
**129**(2001), 3177-3184 Request permission

## Abstract:

The Lipschitz formula is extended to a two-variable form. While the theorem itself is of independent interest, we justify its existence further by indicating several applications in the theory of modular forms.## References

- John J. Benedetto and Georg Zimmermann,
*Sampling multipliers and the Poisson summation formula*, J. Fourier Anal. Appl.**3**(1997), no. 5, 505–523. Dedicated to the memory of Richard J. Duffin. MR**1491931**, DOI 10.1007/BF02648881 - Dickson, L.E. (1930).
*Studies in the Theory of Numbers.*Univ. of Chicago Press, Chicago. - Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi,
*Higher transcendental functions. Vol. I*, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman; With a preface by Mina Rees; With a foreword by E. C. Watson; Reprint of the 1953 original. MR**698779** - Marvin I. Knopp,
*On the Fourier coefficients of cusp forms having small positive weight*, Theta functions—Bowdoin 1987, Part 2 (Brunswick, ME, 1987) Proc. Sympos. Pure Math., vol. 49, Amer. Math. Soc., Providence, RI, 1989, pp. 111–127. MR**1013169** - Knopp, M.I. (1993).
*Modular Functions in Analytic Number Theory*, 2nd edition. Chelsea, New York. - Knopp, M.I. and Robins, S., Easy Proofs of Riemann’s Functional Equation for $\zeta (s)$ and of Lipschitz Summation.
*Proc. Amer Math. Soc.*, posted on February 2, 2001, PII S 0002-9939(01)06033-6 (to appear in print). - N. N. Lebedev,
*Special functions and their applications*, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR**0350075** - Joseph Lehner,
*Discontinuous groups and automorphic functions*, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, R.I., 1964. MR**0164033** - Lipschitz, R. (1889). Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen.
*J. Reine und Angew. Math.***CV**, 127–156. - Hans Maass,
*Lectures on modular functions of one complex variable*, Tata Institute of Fundamental Research Lectures on Mathematics, No. 29, Tata Institute of Fundamental Research, Bombay, 1964. Notes by Sunder Lal. MR**0218305** - Paul C. Pasles,
*Nonanalytic automorphic integrals on the Hecke groups*, Acta Arith.**90**(1999), no. 2, 155–171. MR**1709052**, DOI 10.4064/aa-90-2-155-171 - Pasles, P.C. (2000). Convergence of Poincaré series with two complex coweights.
*Contemp. Math.*,**251**, AMS, Providence, 453–461. - Pasles, P.C. (2000). A Hecke correspondence theorem for nonanalytic automorphic integrals.
*J. Number Theory***83**(2), 256–281. - Pribitkin, W. (1995). The Fourier coefficients of modular forms and modular integrals having small positive weight. Doctoral Dissertation, Temple University, Philadelphia.
- Pribitkin, W. (1999). The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I.
*Acta Arith.***91**(4), 291–309. - Pribitkin, W. (2000). The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II.
*Acta Arith.***93**(4), 343–358. - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3

## Additional Information

**Paul C. Pasles**- Affiliation: Department of Mathematical Sciences, Villanova University, Villanova, Pennsylvania 19085
- Email: pasles@member.ams.org
**Wladimir de Azevedo Pribitkin**- Affiliation: Department of Mathematics, Princeton University, 607 Fine Hall, Princeton, New Jersey 08544
- Email: w_pribitkin@msn.com, wladimir@princeton.edu
- Received by editor(s): March 20, 2000
- Published electronically: April 2, 2001
- Communicated by: Dennis A. Hejhal
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**129**(2001), 3177-3184 - MSC (2000): Primary 11F30, 11F37, 42A99
- DOI: https://doi.org/10.1090/S0002-9939-01-06038-5
- MathSciNet review: 1844990