On homology of real algebraic varieties
HTML articles powered by AMS MathViewer
- by Yıldıray Ozan PDF
- Proc. Amer. Math. Soc. 129 (2001), 3167-3175 Request permission
Abstract:
Let $R$ be a commutative ring with unity and $X$ an $R$-oriented compact nonsingular real algebraic variety of dimension $n$. If $i :X \rightarrow X_{\mathbb C}$ is any nonsingular complexification of $X$, then the kernel, which we will denote by $KH_k(X, R)$, of the induced homomorphism ${i}_*:H_k(X,R) \rightarrow H_k(X_{\mathbb C},R)$ is independent of the complexification. In this work, we study $KH_k(X, R)$ and give some of its applications.References
- Selman Akbulut and Henry King, Topology of real algebraic sets, Mathematical Sciences Research Institute Publications, vol. 25, Springer-Verlag, New York, 1992. MR 1225577, DOI 10.1007/978-1-4613-9739-7
- Selman Akbulut and Henry King, The topology of real algebraic sets, Knots, braids and singularities (Plans-sur-Bex, 1982) Monogr. Enseign. Math., vol. 31, Enseignement Math., Geneva, 1983, pp. 7–47. MR 728579
- S. Akbulut and H. King, Transcendental submanifolds of $\textbf {R}^n$, Comment. Math. Helv. 68 (1993), no. 2, 308–318. MR 1214234, DOI 10.1007/BF02565821
- V. I. Arnol′d, The situation of ovals of real plane algebraic curves, the involutions of four-dimensional smooth manifolds, and the arithmetic of integral quadratic forms, Funkcional. Anal. i Priložen. 5 (1971), no. 3, 1–9 (Russian). MR 0286790
- Edward Bierstone and Pierre D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302. MR 1440306, DOI 10.1007/s002220050141
- J. Bochnak, M. Buchner, and W. Kucharz, Vector bundles over real algebraic varieties, $K$-Theory 3 (1989), no. 3, 271–298. MR 1040403, DOI 10.1007/BF00533373
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
- Jacek Bochnak and Wojciech Kucharz, A characterization of dividing real algebraic curves, Topology 35 (1996), no. 2, 451–455. MR 1380510, DOI 10.1016/0040-9383(95)00024-0
- J. Bochnak and W. Kucharz, On real algebraic morphisms into even-dimensional spheres, Ann. of Math. (2) 128 (1988), no. 2, 415–433. MR 960952, DOI 10.2307/1971431
- J. Bochnak and W. Kucharz, On dividing real algebraic varieties, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 2, 263–271. MR 1490201, DOI 10.1017/S0305004197002235
- Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR 1224675, DOI 10.1007/978-1-4757-6848-0
- Karl Heinz Dovermann, Equivariant algebraic realization of smooth manifolds and vector bundles, Real algebraic geometry and topology (East Lansing, MI, 1993) Contemp. Math., vol. 182, Amer. Math. Soc., Providence, RI, 1995, pp. 11–28. MR 1318728, DOI 10.1090/conm/182/02084
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- J. Huisman, The underlying real algebraic structure of complex elliptic curves, Math. Ann. 294 (1992), no. 1, 19–35. MR 1180447, DOI 10.1007/BF01934310
- Klein, F.: Über eine neue Art von Riemannischen Flachen, Math. Ann. 10 (1876), 398-416.
- R. S. Kulkarni, On complexifications of differentiable manifolds, Invent. Math. 44 (1978), no. 1, 46–64. MR 460731, DOI 10.1007/BF01389901
- Yildiray Ozan, On entire rational maps in real algebraic geometry, Michigan Math. J. 42 (1995), no. 1, 141–145. MR 1322195, DOI 10.1307/mmj/1029005159
- Yildiray Ozan, Homology of real algebraic fiber bundles having circle as fiber or base, Michigan Math. J. 46 (1999), no. 1, 113–121. MR 1682892, DOI 10.1307/mmj/1030132363
- ———: An obstruction to finding algebraic models for smooth manifolds with prescribed algebraic submanifolds (to appear in Proc. Camb. Phil. Soc.).
- ———: On algebraic K-theory of real algebraic varieities with circle action (preprint).
- V. A. Rohlin, Complex orientation of real algebraic curves, Funkcional. Anal. i Priložen. 8 (1974), no. 4, 71–75 (Russian). MR 0368044
- V. A. Rohlin, Complex topological characteristics of real algebraic curves, Uspekhi Mat. Nauk 33 (1978), no. 5(203), 77–89, 237 (Russian). MR 511882
- Oleg Viro (ed.), Topology of manifolds and varieties, Advances in Soviet Mathematics, vol. 18, American Mathematical Society, Providence, RI, 1994. MR 1296885, DOI 10.1090/advsov/018
Additional Information
- Yıldıray Ozan
- Affiliation: Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey
- Email: ozan@metu.edu.tr
- Received by editor(s): November 26, 1998
- Received by editor(s) in revised form: March 20, 2000
- Published electronically: April 9, 2001
- Communicated by: Michael Stillman
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 3167-3175
- MSC (1991): Primary 14P25; Secondary 14E05
- DOI: https://doi.org/10.1090/S0002-9939-01-06065-8
- MathSciNet review: 1844989