Hilbert modular pseudodifferential operators
HTML articles powered by AMS MathViewer
- by Min Ho Lee
- Proc. Amer. Math. Soc. 129 (2001), 3151-3160
- DOI: https://doi.org/10.1090/S0002-9939-01-06117-2
- Published electronically: April 9, 2001
- PDF | Request permission
Abstract:
We introduce Jacobi-like forms of several variables, and study their connections with Hilbert modular forms and pseudodifferential operators of several variables. We also construct Rankin-Cohen brackets for Hilbert modular forms using such Jacobi-like forms.References
- E. Belokolos, A. Bobenko, V. Enol’skii, A. Its, and V. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer-Verlag, Heidelberg, 1994.
- Paula Beazley Cohen, Yuri Manin, and Don Zagier, Automorphic pseudodifferential operators, Algebraic aspects of integrable systems, Progr. Nonlinear Differential Equations Appl., vol. 26, Birkhäuser Boston, Boston, MA, 1997, pp. 17–47. MR 1418868
- L. Dickey, Soliton equations and Hamiltonian systems, World Scientific, Singapore, 1991.
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Eberhard Freitag, Hilbert modular forms, Springer-Verlag, Berlin, 1990. MR 1050763, DOI 10.1007/978-3-662-02638-0
- Paul B. Garrett, Holomorphic Hilbert modular forms, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1990. MR 1008244
- David Mumford, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR 742776, DOI 10.1007/978-0-8176-4578-6
- A. Parshin, On a ring of formal pseudo-differential operators, Proc. Steklov Inst. Math. 224 (1999), 266–280.
- D. Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 57–75.
Bibliographic Information
- Min Ho Lee
- Affiliation: Department of Mathematics, University of Northern Iowa, Cedar Falls, Iowa 50614
- Email: lee@math.uni.edu
- Received by editor(s): March 10, 2000
- Published electronically: April 9, 2001
- Communicated by: Dennis A. Hejhal
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 3151-3160
- MSC (2000): Primary 11F41, 35S05
- DOI: https://doi.org/10.1090/S0002-9939-01-06117-2
- MathSciNet review: 1844987