A SIMPLE PROOF FOR SCHUR’S THEOREM

R. A. KORTRAM

(Communicated by Juha M. Heinonen)

ABSTRACT. In 1917 Schur gave a characterization of bounded analytic functions on the unit disc. We present a simple proof.

Schur’s theorem

Let \(H(\Delta) \) be the set of analytic functions on the unit disc \(\Delta \) in the complex plane, and let \(B \subset H(\Delta) \) be the subset of functions \(f \) for which \(f(\Delta) \subset \overline{\Delta} \). Schur [3] obtained the following result.

Theorem. For functions \(f: z \to \sum_{k=0}^\infty a_k z^k \in H(\Delta) \), the following conditions are equivalent.

1) \(f \in B \).

2) For all \(N \in \mathbb{N} \) and for all \(\lambda_0, \ldots, \lambda_N \in \mathbb{C} \) we have

\[
\left| \sum_{k=0}^N \sum_{n=k}^\infty a_{n-k} \lambda_n \right|^2 \leq \sum_{k=0}^N |\lambda_k|^2.
\]

There exist several proofs of this result; see e.g. [1], page 15, [2], page 40, page 180. We present a simple and elementary one. Our starting point is another characterization of \(B \). As usual, we write \(H^2 \) for the Hardy space of functions \(f: z \to \sum_{k=0}^\infty a_k z^k \in H(\Delta) \) for which

\[
\|f\|_2^2 = \sum_{k=0}^\infty |a_k|^2 = \lim_{r \to 1^-} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty.
\]

Lemma. Let \(f \in H(\Delta) \) and let \(M_f: H(\Delta) \to H(\Delta) \) be the multiplication operator defined by \(M_f(g) = f \cdot g \). Then the following conditions are equivalent.

1) \(f \in B \).

2) \(M_f(H^2) \subset H^2 \) and \(\|M_f\| \leq 1 \).

Proof. 1) \(\implies \) 2) is obvious.

2) \(\implies \) 1). We have \(1 \in H^2 \), hence \(f \in H^2 \), hence \(f^2 \in H^2, \ldots, f^n \in H^2 \) and
\[\|f^n\|_2 \leq 1, \text{ i.e. for all } n \]
\[\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^{2n} \, d\theta \leq 1. \]

Thus \(|f(z)| \leq 1 \) for all \(z \).

We are ready for the proof of Schur’s theorem.

1) \(\implies \) 2). For every sequence \(\mu_0, \mu_1, \ldots \in \mathbb{C} \) with \(\mu_{N+1} = \mu_{N+2} = \ldots = 0 \), we see that the polynomial \(g : z \to \sum_{k=0}^{N} \mu_k z^k \in H^2 \) and that

\[\|g\|_2^2 = \sum_{k=0}^{N} |\mu_k|^2. \]

We have

\[M_f(g)(z) = \sum_{m=0}^{\infty} \left(\sum_{l=0}^{m} a_{m-l} \mu_l \right) z^m, \]

so by the lemma we have

\[\sum_{m=0}^{N} \left(\sum_{l=0}^{m} a_{m-l} \mu_l \right)^2 \leq \sum_{m=0}^{\infty} \left(\sum_{l=0}^{m} a_{m-l} \mu_l \right)^2 \leq \sum_{k=0}^{N} |\mu_k|^2. \]

Take \(\mu_k = \lambda_{N-k} \) \((k = 0, \ldots, N) \) and we obtain

\[\sum_{m=0}^{\infty} \left(\sum_{l=0}^{m} a_{m-l} \lambda_{N-l} \right)^2 \leq \sum_{k=0}^{N} |\lambda_k|^2. \]

The change of variables \(m = N - k, \ l = N - n \) leads to

\[\sum_{k=0}^{N} \left(\sum_{n=k}^{N} a_{n-k} \lambda_n \right)^2 \leq \sum_{k=0}^{N} |\lambda_k|^2. \]

2) \(\implies \) 1). Let \(z \in \Delta \); choose \(\lambda_n = z^n \) and take the limit for \(N \to \infty \). We obtain:

\[\frac{1}{1-|z|^2} |f(z)|^2 \leq \frac{1}{1-|z|^2}; \text{ i.e., } |f(z)| \leq 1. \]

References

Department of Mathematics, University of Nijmegen, 6525 ED Nijmegen, The Netherlands

E-mail address: kortram@sci.kun.nl