INVERSE SCATTERING FOR THE NONLINEAR SCHRÖDINGER EQUATION II.
RECONSTRUCTION OF THE POTENTIAL AND THE NONLINEARITY
IN THE MULTIDIMENSIONAL CASE

RICARDO WEDER

(Communicated by Christopher D. Sogge)

Abstract. We solve the inverse scattering problem for the nonlinear Schrödinger equation on \mathbb{R}^n, $n \geq 3$:

$$i\frac{\partial}{\partial t}u(t,x) = -\Delta u(t,x) + V_0(x)u(t,x) + \sum_{j=1}^{\infty} V_j(x)|u|^{2(j_0+1)}u(t,x).$$

We prove that the small-amplitude limit of the scattering operator uniquely determines $V_j,j=0,1,\cdots$. Our proof gives a method for the reconstruction of the potentials $V_j,j=0,1,\cdots$. The results of this paper extend our previous results for the problem on the line.

1. Introduction

Let us consider the following nonlinear Schrödinger equation with a potential:

$$i\frac{\partial}{\partial t}u(t,x) = -\Delta u(t,x) + V_0(x)u(t,x) + F(x,u), u(0,x) = \phi(x),$$

where $t \in \mathbb{R}$, $x \in \mathbb{R}^n$, $n \geq 3$. The potential, V_0, is a real-valued function, $F(x,u)$ is a complex-valued function, and $\Delta := \sum_{j=1}^{n} D_j^2$. We use the standard notation, $D_j := \frac{\partial}{\partial x_j}$ and for $\alpha := (\alpha_1,\cdots,\alpha_n)$, $D^\alpha := D_1^{\alpha_1}\cdots D_n^{\alpha_n}$, with $|\alpha| := \sum_{j=1}^{n} \alpha_j$. We first construct the scattering operator for the nonlinear Schrödinger equation (1.1). For this purpose we introduce some assumptions and definitions.

Assumption A. Let p satisfy $\rho < p < 1 + \frac{4}{n-1}$, where ρ is the positive root of $\frac{n}{2p+1} = \frac{1}{\rho}$. Let k be an integer such that $k > \frac{4}{p+1}$. Let $F = F_1 + iF_2$ with F_1, F_2 real-valued, and $u = r_1 + ir_2, r_1, r_2 \in \mathbb{R}$. We suppose that $F(0) = 0$ and that for all integers β with $1 \leq \beta \leq k+1$ and all α with $|\beta + |\alpha|| \leq k+1$, we have that

$$\sum_{j=1}^{2} |\frac{\partial^\beta}{\partial r_1^{\beta_1} \partial r_2^{\beta_2}} D^\alpha F_j(x,u)| \leq C|u|^{|\max(0,p-\beta)|} \text{ for } |u| \leq \gamma,$$

for some $\gamma > 0$, and for all nonnegative integers, β_1, β_2, with $\beta = \beta_1 + \beta_2$.

Received by the editors January 19, 2000 and, in revised form, April 27, 2000.

2000 Mathematics Subject Classification. Primary 35R30, 35Q55, 35P25, 81U40.

This research was partially supported by Proyecto PAPIIT-DGAPA IN 105799.

The author is a Fellow of Sistema Nacional de Investigadores.
We denote by H_0 the self-adjoint realization of $-\Delta$ in $L^2(\mathbb{R}^n)$ with domain the Sobolev space $W_{2,2}$. For the definition of the Sobolev spaces $W_{j,p}$, $j = 1, 2, \ldots, 1 \leq p \leq \infty$, see [1].

Assumption B. We assume that V_0 is real valued and that for some $\delta > (3n/2)+1$,

$$
\sup_{x \in \mathbb{R}^n} (1 + |x|)^{\delta} \left(\int_{|x-y| \leq 1} |D^{\alpha}V_0(y)|^{p_0} \, dy \right)^{1/p_0} < \infty,
$$

for all $|\alpha| \leq k + k_0$, with k as in Assumption A. If $n = 3$, $p_0 = 2$ and $k_0 = 0$, and if $n \geq 4$, $p_0 > n/2$ and $k_0 := [(n-1)/2]$, where $[\sigma]$ denotes the integral part of σ. Moreover, assume that zero is neither an eigenvalue nor half-bound state (a resonance) of $H := H_0 + V_0$.

Zero is said to be a half-bound state of H if the equation $H\phi = 0$ has a solution $\phi \notin L^2(\mathbb{R}^n)$, such that $(1 + |x|)^{1-\epsilon} \phi \in L^2(\mathbb{R}^n)$ for all $\epsilon > 0$.

Under Assumption B H is self-adjoint with domain $W_{2,2}$ and it has no singular-continuous spectrum and no positive eigenvalues [5]. Moreover, the wave operators

$$
W_\pm := s - \lim_{t \to \pm \infty} e^{itH} e^{-itH_0}
$$

exist and $\text{Range} W_+ = \mathcal{H}_c$, the subspace of continuity of H. The scattering operator for the linear Schrödinger equation (equation (1.1) with $F = 0$) is given by

$$
S_L := W_+ W_-.
$$

Actually, these results are true under more general conditions. The crucial issue is that Yajima has proven that under Assumption B the wave operators and the adjoints, W_\pm^*, are bounded operators on $W_{l,p}, l = 0, 1, \cdots, k, 1 \leq p \leq \infty$. For this result see Theorem 1.2 of [23] and also [24]. This result and the intertwining relations for the wave operators, $e^{-itH} P_c = W_+ e^{-itH_0} W_+^*$, imply that the following $L^p - L^{\hat{p}}$ estimate follows from the corresponding result for H_0 (see [24]):

$$
\|e^{-itH} P_c\|_{B(L^p, L^{\hat{p}})} \leq \frac{C}{t^{n(p-1)/2}}, \quad t > 0,
$$

for $1 \leq p \leq 2$ and where $\frac{1}{p} + \frac{1}{\hat{p}} = 1$. By P_c we denote the orthogonal projector onto \mathcal{H}_c. For any pair of Banach spaces X, Y, we denote by $\mathcal{B}(X, Y)$ the Banach space of all bounded operators from X into Y. The $L^p - L^{\hat{p}}$ estimate in $\mathbb{R}^n, n \geq 3$, was first proven, under slightly different conditions, in [8].

The results of Yajima [24] allow us to extend to the case of $n \geq 3$ the method for the construction of the scattering operator for (1.1) and for the solution of the inverse scattering problem that we gave in [23] in the case of $n = 1$. The $L^p - L^{\hat{p}}$ estimate and the continuity of the wave operators on $W_{k,p}$ for the problem on the line was proven in [20] and [21] (see also [6]).

Let us denote [13],

$$
N_\delta(V_0) := \sup_{x \in \mathbb{R}^n} \left[\int_{|x-y| < \delta} |V(y)|^{p_0} \, dy \right]^{1/p_0}.
$$

Assumption C. We assume that $N_\delta(D^{\alpha}V_0) < \infty$, $\delta > 0$, and that

$$
\lim_{\delta \to 0} N_\delta(D^{\alpha}V_0) = 0,
$$

where $|\alpha| \leq k - 1$, with k and p_0 as in Assumption B.
We designate
\[M := \{ u \in C(\mathbb{R}, W_{k,p+1}) : \sup_{t \in \mathbb{R}} (1 + |t|)^d \| u \|_{W_{k,p+1}} < \infty \} , \]
where \(d := \frac{p-1}{p+1} \). For functions \(u(t, x) \) defined in \(\mathbb{R}^{n+1} \) we denote \(u(t) \) for \(u(t, \cdot) \).

In the following theorem we construct the small-amplitude scattering operator.

Theorem 1.1. Suppose that Assumptions A, B and C are satisfied and that \(H \) has no eigenvalues. Then, there is a \(\delta > 0 \) such that for all \(\phi_- \in W_{k+1,2} \cap W_{k,1+\frac{1}{p}} \) with \(\| \phi_- \|_{W_{k+1,2}} + \| \phi_- \|_{W_{k,1+\frac{1}{p}}} \leq \delta \) there is a unique solution, \(u \), to (1.1) such that \(u \in C(\mathbb{R}, W_{k,2}) \cap M \) and
\[
\lim_{t \to -\infty} \| u(t) - e^{-itH} \phi_- \|_{W_{k,2}} = 0.
\]
Moreover, there is a unique \(\phi_+ \in W_{k,2} \) such that
\[
\lim_{t \to -\infty} \| u(t) - e^{-itH} \phi_+ \|_{W_{k,2}} = 0.
\]
Furthermore, \(e^{-itH} \phi_\pm \in M \) and
\[
\| u - e^{-itH} \phi_\pm \|_M \leq C \| e^{-itH} \phi_\pm \|_M^p .
\]

The scattering operator \(S_{V_0} : \phi_- \mapsto \phi_+ \) is injective on \(W_{k+1,2} \cap M \).

Note that in Theorem 1.1 we do not restrict \(F \) in such a way that energy is conserved. Moreover, for \(n = 3, \rho = 2 \) and \(\lim_{n \to \infty} \rho = 1 \). We prove Theorem 1.1 in Section 2 extending to this case the proof given in [23] in the case of \(n = 1 \). We construct the solution \(u(t, x) \) by means of the contraction mapping theorem in a ball, \(M_R \), of \(M \) with small enough radius, \(R \). It follows from Sobolev’s imbedding theorem [11] that \(|u(t, x)| < \gamma, t \in \mathbb{R}, x \in \mathbb{R}^n \), for all \(u(t, x) \in M_R \). This is the reason why we only have to assume that (1.2) holds for \(|u| \leq \gamma \). For results on scattering for the nonlinear Schrödinger equation in the case where \(V_0 = 0 \) see [16], [17], [18], [10], [9], [11], [3], [7], [2] and the references quoted there. In [8] the direct scattering for (1.1) with \(F = F(u) \) was studied for \(n \geq 3 \). The corresponding inverse problem was considered in [19]. For the case of the nonlinear Klein-Gordon equation on the line see [22].

Since we wish to reconstruct the potential, \(V_0 \), we consider the scattering operator that relates asymptotic states that are solutions to the linear Schrödinger equation with potential zero (1.1) with \(V_0 = F = 0 \):
\[
S := W_+^* S_{V_0} W_- .
\]

The first step is to reconstruct \(S_L \) from \(S \).

Theorem 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied. Then for every \(\phi_- \in W_{k+1,2} \cap W_{k,1+\frac{1}{p}} \),
\[
\frac{d}{d\epsilon} S(\epsilon \phi) \bigg|_{\epsilon = 0} = S_L \phi ,
\]
where the derivative in the left-hand side of (1.13) exists in the strong convergence in $W_{k,2}$.

Corollary 1.3. Under the conditions of Theorem 1.1 the scattering operator, S, determines uniquely the potential V_0.

Proof. By Theorem 1.2 S uniquely determines S_L. From S_L we uniquely reconstruct the potential V_0 using the known results on the inverse scattering problem for the linear Schrödinger equation. See [4].

Let us now consider the case where $F(x, u) = \sum_{j=1}^{\infty} V_j(x)|u|^{2(j_0+j)} u$. As we prove below we can also reconstruct the $V_j, j = 1, 2, \cdots$.

Lemma 1.4. Suppose that the conditions of Theorem 1.1 are satisfied, and moreover, that $F(x, u) = \sum_{j=1}^{\infty} V_j(x)|u|^{2(j_0+j)} u$, for $|u| \leq \gamma$, for some $\gamma > 0$, where j_0 is an integer such that $j_0 \geq (p-3)/2$, and where $V_j \in W_{k,\infty}$ with $\|V_j\|_{W_{k,\infty}} \leq C^j, j = 1, 2, \cdots$, for some constant C. Then, for any $\phi \in W_{k+1,2} \cap W_{k,1+p}$ there is an $\epsilon_0 > 0$ such that for all $0 < \epsilon < \epsilon_0$:

(1.16)
\[i \langle (S_{\phi} - I)(\epsilon \phi), \phi \rangle_{L^2} = \sum_{j=1}^{\infty} e^{2(j_0+j)+1} \left[\int \int dt dx V_j(x) |e^{-itH_0 \phi}|^{2(j_0+j+1)} + Q_j \right], \]

where $Q_1 = 0$ and $Q_j, j > 1$, depends only on ϕ and on V_{l} with $l < j$. Moreover, for any $\hat{x} \in \mathbb{R}$, and any $\lambda \geq 1$, we denote $\phi_\lambda(x) := \phi(\lambda(x - \hat{x}))$. Then, if $\phi \neq 0$,

(1.17)
\[V_j(\hat{x}) = \lim_{\lambda \to \infty} \lambda^{n+2} \frac{\int \int dt dx V_j(x) |e^{-itH_0 \phi}|^{2(j_0+j+1)}}{\int \int dt dx |e^{-itH_0 \phi}|^{2(j_0+j+1)}}. \]

Corollary 1.5. Under the conditions of Lemma 1.4 the scattering operator, S, determines uniquely the potentials $V_j, j = 0, 1, \cdots$.

Proof. By Corollary 1.3, S uniquely determines V_0. Then the wave operators, W_{\pm}, are uniquely determined, and by (1.13), S uniquely determines S_{V_0}. Finally by (1.16) and (1.17) S_{V_0} uniquely determines $V_j, j = 1, 2, \cdots$.

We reconstruct the potentials $V_j, j = 0, 1, \cdots$, in the following way. First we obtain S_L from S using (1.13). By the method in [4] for inverse scattering for the linear Schrödinger equation we reconstruct V_0. We then reconstruct S_{V_0} from S using (1.13). Finally (1.16) and (1.17) give us, recursively, $V_j, j = 1, 2, \cdots$. Our formula (1.17) is an extension to our case of the reconstruction algorithm of [1].

In [15] Strauss proved that in the case $V_0 = 0$ and $F(x, u) = V(x)|u|^{p-1} u, x \in \mathbb{R}^n, p > 4$ if $n = 1, p > 3$ if $n = 2, p \geq 3$ if $n \geq 3$, and $V(x)$ a real-valued potential whose derivatives up to order l are bounded, with $l > 3n/4$; then, the scattering operator uniquely determines V.

2. Scattering

By Theorem 3 on page 135 of [14],

(2.1)
\[\| \mathcal{F}^{-1}(1 + q^2)^{k/2}(\mathcal{F}f)(q) \|_{L^p} \]

is a norm that is equivalent to the norm of $W_{k,p}, 1 < p < \infty$. \mathcal{F} denotes the Fourier transform. Then, by equation (1.2) of [24],

(2.2)
\[\| (I + H)^{l/2} f \|_{L^p} \]
defines a norm that is equivalent to the norm of $W_{l,p}, l = 0, 1, \cdots, k, 1 < p < \infty$. We will use this equivalence below without further comments. This implies that estimate (1.6) holds in the norm on $\mathcal{B}(W_{l,p},W_{l,0}), l = 0, 1, \cdots, k$.

The following inequality is proven in Theorem 9.2 on page 141 of [13]:

$$
\| (D^a V_0) \|_{L^2} \leq C_1 N_\delta (D^a V_0) \| \phi \|_{W_{2,2}} + C_2 N_1 (D^a V_0) \| \phi \|_{L^2},
$$

where C_1 is independent of δ. Let us denote $R(\rho) := (H + \rho)^{-1}$ and $R_0(\rho) := (H_0 + \rho)^{-1}$. Equation (2.5) implies that if Assumption C holds, given $a < 1$, there is $\rho_0 > 0$ such that

$$
\| V_0 R_0(\rho) \|_{B(L^2)} \leq a < 1
$$

for all $\rho \geq \rho_0 > 0$. Moreover, ρ_0 depends on V_0 only through $N_\delta(V_0)$. It follows that

$$
R(\rho) = R_0(\rho) (I + V_0 R_0(\rho))^{-1} = R_0(\rho) \sum_{t=0}^{\infty} (-1)^t (V_0 R_0(\rho))^t
$$

for all $\rho \geq \rho_0$. Taking derivatives in (2.5) term by term we prove that

$$
\| R(\rho) \|_{B(W_{j,2},W_{j+2,2})} \leq C, j = 0, 1, 2, \cdots, k - 1.
$$

It follows that if k is odd,

$$
\| (H_0 + \rho)^{(k+1)/2} (R(\rho))^{(k+1)/2} \|_{B(L^2)} \leq C.
$$

Then, for some constants C_1, C_2,

$$
C_1 \| \phi \|_{W_{k+1,2}} \leq \left\| (I + H)^{(k+1)/2} \phi \right\|_{L^2} \leq C_2 \| \phi \|_{W_{k+1,2}}.
$$

In the case when k is even we have that

$$
R(\rho)^{(k+1)/2} = R(\rho)^{k/2} (H + \rho)^{-1/2}.
$$

Again using Theorem 9.2 on page 141 of [13] we obtain that

$$
\| V_0^{1/2} \phi \| \leq C_1 [N_\delta(V_0)]^{1/2} \| \phi \|_{W_{1,2}} + C_2 [N_1(V_0)]^{1/2} \| \phi \|_{L^2}.
$$

Then, if ρ is large enough,

$$
\| (H + \rho)^{1/2} \phi \|^2 = ((H_0 + V_0 + \rho) \phi, \phi) \geq C \| \phi \|^2_{W_{1,2}},
$$

and we have that

$$
\| (H + \rho)^{-1/2} \|_{B(L^2,W_{1,2})} \leq C.
$$

Hence, by (2.3), (2.9) and (2.12), equation (2.8) also holds for k even.

The proofs of Theorem 1.1, Theorem 1.2, and Lemma 1.4 follow as in [23]. We give details below for the convenience of the reader.

Proof of Theorem 1.1. By Sobolev’s imbedding theorem [11] L^∞ is continuously imbedded in $W_{k,1+p}$ and it follows by standard arguments (see [9] and (2.10) below) that $u \in C(\mathbf{R}, W_{k,2}) \cap M$ is a solution to (1.1) with $\lim_{t \to -\infty} \| u(t) - e^{-itH} \phi \|_{W_{1,2}} = 0$ for some $\phi \in W_{k,2}$, if and only if u is a solution to the following integral equation:

$$
u(t) = e^{-itH} \phi + \frac{1}{t} \int_{-\infty}^{t} e^{-i(t-\tau)H} F(x,u(\tau)) \, d\tau.$$
Let us designate
\begin{equation}
Q(u) := \frac{1}{t} \int_{-\infty}^{t} e^{-i(t-\tau)H} F(x, u(\tau)) \, d\tau.
\end{equation}

For \(R > 0 \) let us denote \(M_R := \{ u \in M : \|u\|_M \leq R \} \). By Assumption A, (1.14) and since \(L_\infty \subset W_{k,p+1} \), there is an \(R_0 > 0 \) such that if \(u \in M_{R_0} \),
\begin{equation}
\|Q(u) - Q(v)\|_{W_{k,p+1}} \leq C (1 + |t|)^{-d} (\|u\|_M + \|v\|_M)^{p-1} \|u - v\|_M,
\end{equation}
where we used that \(d > 1 \) and that \(p d > 1 \). Moreover, by (2.15) with \(v(t) = 0 \),
\begin{equation}
\|Q(u(t))\|_{W_{k,2}}^2 \leq CR \int_{-\infty}^{t} d\tau \left((I + H)^{k/2} F(x, u(\tau)), (I + H)^{k/2} Q(u) \right)_{L^2} \leq C \int_{-\infty}^{t} d\tau \|F(x, u(\tau))\|_{W_{k,1+1/p}} \times (1 + |\tau|)^{-d} \|u\|_M^p \leq C \int_{-\infty}^{t} d\tau (1 + |\tau|)^{-d(p+1)} \|u\|_M^{2p} \leq C(1 + \max\{0, -t\})^{-(d+p-1)} \|u\|_M^{2p}.
\end{equation}

Let us first prove the uniqueness. For \(u, v \) any pair of solutions to (1.1) that satisfy (1.10) we have that
\begin{equation}
u(t) - v(t) = Q(u(t)) - Q(v(t)).\end{equation}
Let us denote \(u_T := \chi(-\infty, T)(t) u(t) \), where \(\chi(-\infty, T)(t) \) is the characteristic function of \((-\infty, T), T \in \mathbb{R} \). \(v_T \) is similarly defined. It follows from (2.17) that
\begin{equation}
\|u_T(t) - v_T(t)\|_{\tilde{M}}^2 < 1/2 \|u_T(t) - v_T(t)\|_{\tilde{M}}^2 \text{ for some } T \text{ negative enough},
\end{equation}
where \(\tilde{M} \) is defined as \(M \), but with a slightly smaller \(p \). Then, \(u(t) = v(t) \) for \(t \leq T \), and the standard uniqueness result implies that \(u = v \). The uniqueness of \(\phi_+ \) is obvious by the unitarity of \(e^{-itH} \) in \(L^2 \).

By Sobolev’s imbedding theorem,
\begin{equation}
\|e^{-itH} \phi_-\|_{W_{k,p+1}} \leq C \|e^{-itH} \phi_-\|_{W_{k,1+2}} \leq C \| (H + I)^{(k+1)/2} e^{-itH} \phi_-\|_{L^2} \leq C \| (H + I)^{(k+1)/2} \phi_-\|_{L^2} \leq C \| \phi_-\|_{W_{k,1+2}}.
\end{equation}

By (1.6) and (2.19):
\begin{equation}
\|e^{-itH} \phi_-\|_M \leq C \left[\| \phi_-\|_{W_{k+1,2}} + \| \phi_-\|_{W_{k,1+1/2}} \right].
\end{equation}

Let us take \(R \leq R_0 \) so small that \(C(2R)^{p-1} \leq 1/2 \), with \(C \) as in (2.15), and \(\delta > 0 \) such that \(C \delta \leq R/4 \), with \(C \) as in (2.20). Then, the map \(u \mapsto e^{-itH} \phi_- + Q u \) is a contraction from \(M_R \) into \(M_R \) for all \(\phi_- \in W_{k+1,2} \cap W_{k,1+1/2} \) with \(\| \phi_-\|_{W_{k+1,2}} + \)
The contraction mapping theorem implies that this map has a unique fixed point that is a solution to (2.13) in M_R. Moreover,

$$
\|u\|_M \leq \|e^{-itH}\phi_-\|_M + \frac{1}{2}\|u\|_M,
$$

and then

$$
\|u\|_M \leq C\|e^{-itH}\phi_-\|_M.
$$

Equation (1.12) for ϕ_- follows from (2.13), (2.15) with $v = 0$ and (2.22). By (2.13) and (2.16) $u \in C(R, W_{k,2})$ and (1.10) holds.

We now define

$$
\phi_+ = \phi_- + \frac{1}{i} \int_{-\infty}^{\infty} e^{itH}F(x,u(t))\,dt.
$$

Estimating as in (2.16) we prove that $\phi_+ \in W_{k,2}$ and that

$$
\|\phi_+ - \phi_-\|_{W_{k,2}} \leq C\|u\|_M^p.
$$

Equation (1.13) follows from (2.21), (2.22) and (2.24). By (2.23) and (2.24)

$$
u(t) = e^{-itH}\phi_+ - \frac{1}{i} \int_{t}^{\infty} e^{-i(t-\tau)H}F(x,u(\tau))\,d\tau.
$$

We prove (1.11) estimating as in (2.16). In a similar way we prove that

$$
\left\|\int_{t}^{\infty} e^{-i(t-\tau)H}F(x,u(\tau))\,d\tau\right\|_M \leq C\|u\|^\frac{p}{2}_M,
$$

and it follows that

$$
\|u\|_M \leq C\|e^{-itH}\phi_+\|_M.
$$

Equation (1.12) for ϕ_+ follows from (2.25), (2.26) and (2.27). We prove that S_{V_0} is injective as in the proof of uniqueness above.

Proof of Theorem 1.2. Since $S(0) = 0$ and W_{\pm} are bounded on $W_{k,2}$, it is enough to prove that

$$s - \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} (S_V(\epsilon \phi) - \epsilon \phi) = 0.
$$

By (2.20) and (2.22) with ϕ_- replaced by $\epsilon \phi$ we have

$$
\|u\|_M \leq C\epsilon \left[\|\phi_-\|_{W_{k+1,2}} + \|\phi_-\|_{W_{k,1+\frac{1}{p}}}\right].
$$

To prove (2.28) we estimate the integral on the right-hand side of (2.23) as in (2.16), with the aid of (2.29).

Proof of Lemma 1.4. By the contraction mapping theorem,

$$
u(t) = e^{-itH}\epsilon \phi + \sum_{n=1}^{\infty} Q^n e^{-itH}\epsilon \phi.
$$

Equation (1.16) follows from (2.23) and (2.30). By Sobolev’s imbedding theorem [1], $W_{k+1,2} \subset L^q$, $2 \leq q \leq \infty$. Then, estimating as in (2.19) we prove that
\[\|e^{-itH}\phi\|_{L^q} \leq C_q \|e^{-itH}\phi\|_{W_{k+1,2}} \leq C_q \|\phi\|_{W_{k+1,2}}, \quad 2 \leq q \leq \infty, \] and it follows from (1.6) that

\[\int \int dt \, dx \left| e^{-itH} \phi \right|^2 (j_0 + j + 1) < \infty, \quad j = 1, 2, \ldots. \]

(2.31)

For \(\lambda \geq 1 \) and \(\hat{x} \in \mathbb{R}^n \) we denote by \(H_\lambda \) the following self-adjoint operator in \(L^2 \):

\[H_\lambda := H_0 + V_\lambda(x), \quad \text{where} \quad V_\lambda(x) = \frac{1}{\lambda^2} V_0(\frac{x}{\lambda} + \hat{x}). \]

(2.32)

Since \(H \) has no eigenvalues, we have that \(H_\lambda \) has no eigenvalues, i.e., \(H_\lambda > 0 \). Moreover, as \(N_\delta(D^\alpha V_\lambda) \leq N_\delta(D^\alpha V_0) \) for \(\lambda \geq 1 \), equation (2.8) holds with \(H_\lambda \) instead of \(H \) with the same \(C_1, C_2 \) for all \(\lambda \geq 1 \).

Let us denote \(\tilde{t} := \lambda^2 t \) and \(\tilde{x} := \lambda (x - \hat{x}) \). We have that

\[(e^{-itH_\lambda} \phi)(\tilde{x}) = (e^{-itH} \phi)(x). \]

(2.33)

Equation (2.33) implies that

\[I_j := \lambda^{n+2} \int \int dt \, dx \, V_j(x, \tilde{x}) \left| e^{-itH} \phi \right|^2 (j_0 + j + 1) \]

(2.34)

By Theorem VIII.20 on page 286 of [12] and (2.32)

\[s - \lim_{\lambda \to \infty} e^{-itH_\lambda} \phi = e^{-itH_0} \phi, \]

(2.35)

where the limit exists in the strong topology on \(W_{k+1,2} \). By Sobolev’s imbedding theorem, the limit in (2.35) also exists in the strong topology on \(L^q \), \(2 \leq q \leq \infty \). Moreover,

\[\left\| e^{-itH_\lambda} \phi \right\|_{L^\infty} \leq C \left\| \phi \right\|_{W_{k+1,2}}. \]

(2.36)

By (1.6) and (2.33),

\[\left\| e^{-itH_\lambda} \phi \right\|_{L^{p+1}} = \lambda^n \left\| e^{-itH} \phi \right\|_{L^{p+1}} \leq C \frac{1}{\lambda^d} \left\| \phi \right\|_{L^{p+1}} \]

(2.37)

with \(d := \frac{n+1}{p+1} \). Equation (1.17) follows from (2.34), (2.35), (2.36), (2.37) and the dominated convergence theorem. Note that \(2(j_0 + j + 1) \geq p + 1 \), that \(d(p+1) > 1 \), and that \(V_j \) is continuous.

References

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-726, México D.F. 01000

E-mail address: weder@servidor.unam.mx