The sets of monomorphisms and of almost open operators between locally convex spaces
HTML articles powered by AMS MathViewer
- by José Bonet and José A. Conejero
- Proc. Amer. Math. Soc. 129 (2001), 3683-3690
- DOI: https://doi.org/10.1090/S0002-9939-01-06248-7
- Published electronically: June 27, 2001
- PDF | Request permission
Abstract:
If the set of monomorphisms between locally convex spaces is not empty, then it is an open subset of the space of all continuous and linear operators endowed with the topology of the uniform convergence on the bounded sets if and only if the domain space is normable. The corresponding characterization for the set of almost open operators is also obtained; it is related to the lifting of bounded sets and to the quasinormability of the domain space. Other properties and examples are analyzed.References
- Mohamed Akkar, Sur le groupe des éléments inversibles d’une algèbre bornologique convexe. $Q$-algèbres bornologiques convexes, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 2, 35–38 (French, with English summary). MR 777604
- Y. A. Abramovich, C. D. Aliprantis, and I. A. Polyrakis, Some remarks on surjective and bounded below operators, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), no. 2, 455–464. MR 1428776
- Sterling K. Berberian, Lectures in functional analysis and operator theory, Graduate Texts in Mathematics, No. 15, Springer-Verlag, New York-Heidelberg, 1974. MR 0417727
- José Bonet, On the identity $L(E,F)=LB(E,F)$ for pairs of locally convex spaces $E$ and $F$, Proc. Amer. Math. Soc. 99 (1987), no. 2, 249–255. MR 870780, DOI 10.1090/S0002-9939-1987-0870780-3
- Peter G. Casazza and Nigel J. Kalton, Generalizing the Paley-Wiener perturbation theory for Banach spaces, Proc. Amer. Math. Soc. 127 (1999), no. 2, 519–527. MR 1468186, DOI 10.1090/S0002-9939-99-04536-0
- S. Dierolf and D. N. Zarnadze, On homomorphisms between locally convex spaces, Note Mat. 12 (1992), 27–41. Dedicated to the memory of Professor Gottfried Köthe. MR 1258561
- H. G. Garnir, M. De Wilde, and J. Schmets, Analyse fonctionnelle. Théorie constructive des espaces linéaires à semi-normes. Tome I: Théorie générale, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 36, Birkhäuser Verlag, Basel-Stuttgart, 1968 (French). MR 0253007
- Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- Robin Harte, Almost open mappings between normed spaces, Proc. Amer. Math. Soc. 90 (1984), no. 2, 243–249. MR 727242, DOI 10.1090/S0002-9939-1984-0727242-0
- G. J. O. Jameson, Topology and normed spaces, Chapman and Hall, London; Halsted Press [John Wiley & Sons, Inc.], New York, 1974. MR 0463890
- Josef Mall, Ein Satz über die Konvergenz von Kettenbrüchen, Math. Z. 45 (1939), 368–376 (German). MR 40, DOI 10.1007/BF01580290
- Kasahara, See Note p. 206, Bull. de la Soc. Math. France, Memory no. 31-3 (1972).
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- M. Ángeles Miñarro, A characterization of quasinormable Köthe sequence spaces, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1207–1212. MR 1227526, DOI 10.1090/S0002-9939-1995-1227526-3
- Reinhold Meise and Dietmar Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press, Oxford University Press, New York, 1997. Translated from the German by M. S. Ramanujan and revised by the authors. MR 1483073
- R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in $L^{2}$, Studia Math. 54 (1975), no. 2, 149–159. MR 394137, DOI 10.4064/sm-54-2-149-159
- Pedro Pérez Carreras and José Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 113. MR 880207
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Dietmar Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182–200 (German). MR 717893, DOI 10.1515/crll.1983.345.182
Bibliographic Information
- José Bonet
- Affiliation: Departamento de Matemática Aplicada, ETS Arquitectura, Universidad Politécnica de Valencia, E-46071 Valencia, Spain
- ORCID: 0000-0002-9096-6380
- Email: jbonet@mat.upv.es
- José A. Conejero
- Affiliation: Departamento de Matemática Aplicada, Fac. Informatica, Universidad Politécnica de Valencia, E-46071 Valencia, Spain
- Email: aconejero@mat.upv.es
- Received by editor(s): May 2, 2000
- Published electronically: June 27, 2001
- Additional Notes: The authors were partially supported by the project DGESIC, PB97-0333.
The second author was also supported by the Universidad Politécnica de Valencia, grant 19980998. - Communicated by: Jonathan M. Borwein
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 129 (2001), 3683-3690
- MSC (2000): Primary 46A32, 46A03, 46H35, 47A05, 47L05
- DOI: https://doi.org/10.1090/S0002-9939-01-06248-7
- MathSciNet review: 1860503