The sets of monomorphisms and of almost open operators between locally convex spaces
Authors:
José Bonet and José A. Conejero
Journal:
Proc. Amer. Math. Soc. 129 (2001), 3683-3690
MSC (2000):
Primary 46A32, 46A03, 46H35, 47A05, 47L05
DOI:
https://doi.org/10.1090/S0002-9939-01-06248-7
Published electronically:
June 27, 2001
MathSciNet review:
1860503
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
If the set of monomorphisms between locally convex spaces is not empty, then it is an open subset of the space of all continuous and linear operators endowed with the topology of the uniform convergence on the bounded sets if and only if the domain space is normable. The corresponding characterization for the set of almost open operators is also obtained; it is related to the lifting of bounded sets and to the quasinormability of the domain space. Other properties and examples are analyzed.
- 1. Mohamed Akkar, Sur le groupe des éléments inversibles d’une algèbre bornologique convexe. 𝑄-algèbres bornologiques convexes, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 2, 35–38 (French, with English summary). MR 777604
- 2. Y. A. Abramovich, C. D. Aliprantis, and I. A. Polyrakis, Some remarks on surjective and bounded below operators, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), no. 2, 455–464. MR 1428776
- 3. Sterling K. Berberian, Lectures in functional analysis and operator theory, Springer-Verlag, New York-Heidelberg, 1974. Graduate Texts in Mathematics, No. 15. MR 0417727
- 4. José Bonet, On the identity 𝐿(𝐸,𝐹)=𝐿𝐵(𝐸,𝐹) for pairs of locally convex spaces 𝐸 and 𝐹, Proc. Amer. Math. Soc. 99 (1987), no. 2, 249–255. MR 870780, https://doi.org/10.1090/S0002-9939-1987-0870780-3
- 5. Peter G. Casazza and Nigel J. Kalton, Generalizing the Paley-Wiener perturbation theory for Banach spaces, Proc. Amer. Math. Soc. 127 (1999), no. 2, 519–527. MR 1468186, https://doi.org/10.1090/S0002-9939-99-04536-0
- 6. S. Dierolf and D. N. Zarnadze, On homomorphisms between locally convex spaces, Note Mat. 12 (1992), 27–41. Dedicated to the memory of Professor Gottfried Köthe. MR 1258561
- 7. H. G. Garnir, M. De Wilde, and J. Schmets, Analyse fonctionnelle. Théorie constructive des espaces linéaires à semi-normes. Tome I: Théorie générale, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 36, Birkhäuser Verlag, Basel-Stuttgart, 1968 (French). MR 0253007
- 8. Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- 9. Robin Harte, Almost open mappings between normed spaces, Proc. Amer. Math. Soc. 90 (1984), no. 2, 243–249. MR 727242, https://doi.org/10.1090/S0002-9939-1984-0727242-0
- 10. G. J. O. Jameson, Topology and normed spaces, Chapman and Hall, London; Halsted Press [John Wiley & Sons], New York, 1974. MR 0463890
- 11. Gottfried Köthe, Topological vector spaces. I, Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969. MR 0248498
- 12. Kasahara, See Note p. 206, Bull. de la Soc. Math. France, Memory no. 31-3 (1972).
- 13. Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
- 14. M. Ángeles Miñarro, A characterization of quasinormable Köthe sequence spaces, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1207–1212. MR 1227526, https://doi.org/10.1090/S0002-9939-1995-1227526-3
- 15. Reinhold Meise and Dietmar Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press, Oxford University Press, New York, 1997. Translated from the German by M. S. Ramanujan and revised by the authors. MR 1483073
- 16. R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in 𝐿², Studia Math. 54 (1975), no. 2, 149–159. MR 394137, https://doi.org/10.4064/sm-54-2-149-159
- 17. Pedro Pérez Carreras and José Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 113. MR 880207
- 18. Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0365062
- 19. Dietmar Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182–200 (German). MR 717893, https://doi.org/10.1515/crll.1983.345.182
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46A32, 46A03, 46H35, 47A05, 47L05
Retrieve articles in all journals with MSC (2000): 46A32, 46A03, 46H35, 47A05, 47L05
Additional Information
José Bonet
Affiliation:
Departamento de Matemática Aplicada, ETS Arquitectura, Universidad Politécnica de Valencia, E-46071 Valencia, Spain
Email:
jbonet@mat.upv.es
José A. Conejero
Affiliation:
Departamento de Matemática Aplicada, Fac. Informatica, Universidad Politécnica de Valencia, E-46071 Valencia, Spain
Email:
aconejero@mat.upv.es
DOI:
https://doi.org/10.1090/S0002-9939-01-06248-7
Keywords:
Bounded below operators,
monomorphisms,
almost open operators,
locally convex spaces,
quasinormable spaces
Received by editor(s):
May 2, 2000
Published electronically:
June 27, 2001
Additional Notes:
The authors were partially supported by the project DGESIC, PB97-0333.
The second author was also supported by the Universidad Politécnica de Valencia, grant 19980998.
Communicated by:
Jonathan M. Borwein
Article copyright:
© Copyright 2001
American Mathematical Society