INVARIANT SUBSPACES AND REPRESENTATIONS OF CERTAIN VON NEUMANN ALGEBRAS

TOMOYOSHI OHWADA, GUOXING JI, AND KICHI-SUKE SAITO

(Communicated by David R. Larson)

Abstract. Let \((N, \alpha, G)\) be a covariant system and let \((\pi, U)\) be a covariant representation of \((N, \alpha, G)\) on a Hilbert space \(H\). In this note, we investigate the representation of the covariance algebra \(M\) and the \(\sigma\)-weakly closed subalgebra \(A\) generated by \(\pi(N)\) and \(\{U_g\}_{g \in G}\) in the case of \(G = \mathbb{Z}\) or \(\mathbb{R}\) when there exists a pure, full, \(A\)-invariant subspace of \(H\).

1. Introduction

If \(G\) is a locally compact group and \(\alpha : G \to \text{Aut}(N)\) is a continuous homomorphism of \(G\) into the group of *-automorphisms of a von Neumann algebra \(N\), then the triple \((N, \alpha, G)\) is called a covariant system. This notation was introduced by Doplicher, Kastler and Robinson in [2]. Covariant systems have turned out to be very interesting objects, both in theoretical physics and in mathematics. The covariant representation of \((N, \alpha, G)\) means a pair \((\pi, U)\) consisting of a unitary representation \(U\) of \(G\) and a \(\pi\)-representation of \(N\) with \(\pi\) and \(U\) operating over the same Hilbert space \(H\) such that

\[\pi(\alpha_g(x)) = U_g \pi(x) U_g^* \quad (\forall x \in N, \forall g \in G). \]

The covariance algebra \(M\) of \((N, \alpha, G)\) is a von Neumann algebra generated by \(\pi(N)\) and \(\{U_g\}_{g \in G}\). When \(G\) has an order \(\geq\), we consider the \(\sigma\)-weakly closed subalgebra \(A\) of \(M\) which is generated by \(\pi(N)\) and \(\{U_g\}_{g \geq 0}\). The representation theory of \(M\) has been extensively studied by M. Takesaki in [16], M. Landstad in [5] and I. Raeburn in [13], among others. The covariance algebras provide us with a rich variety of examples of operator algebras. In this note, we consider the representation theory of \(M\) and \(A\) in the particular case of \(G = \mathbb{R}\) or \(\mathbb{Z}\). By inspiring the scattering theory of Lax and Phillips in [6], we study the representation of \(M\) and \(A\) to a crossed product and an analytic crossed product, respectively, using the theory of invariant subspace for \(A\). Therefore, our setting is as follows.

Let \(M\) be a von Neumann algebra acting on a Hilbert space \(H\) generated by a von Neumann algebra \(N\) and a unitary operator \(v\) satisfying \(vNv^* = N\), and let \(A\) be a \(\sigma\)-weakly closed subalgebra of \(M\) generated by \(N\) and the non-negative powers of \(v\). At first, we prove that if there is a pure, full, \(A\)-invariant subspace \(M\)
of \mathcal{H}, then M is $*$-isomorphic to a (discrete) crossed product $N \rtimes_\alpha \mathbb{Z}$ of N by a $*$-automorphism $\alpha = \text{adv}$, and that \mathfrak{A} is simultaneously isomorphic to the analytic crossed product $N \rtimes_\alpha \mathbb{Z}_+$.

Similarly, we also consider the representation of a von Neumann algebra M_0 generated by a von Neumann algebra N and a strongly continuous one-parameter unitary group $\{u_t\}_{t \in \mathbb{R}}$ satisfying $u_t N u_t^* = N$ for every t in \mathbb{R}. Let \mathfrak{B} be the σ-weakly closed subalgebra of M_0 generated by N and $\{u_t\}_{t > 0}$. We prove that if there is a pure, full, \mathfrak{B}-invariant subspace of \mathcal{H}, then M_0 is $*$-isomorphic to a continuous crossed product, and that \mathfrak{B} is simultaneously isomorphic to the related analytic crossed product.

Next, in §3, for a strongly continuous one-parameter unitary group $\{u_t\}_{t \in \mathbb{R}}$, we construct the unitary operator v by the Cayley transform of the infinitesimal generator of $\{u_t\}_{t \in \mathbb{R}}$. From this unitary v and $\{u_t\}_{t \in \mathbb{R}}$, we define the von Neumann algebras M, M_0 and the subalgebras \mathfrak{A}, \mathfrak{B}, respectively, as in §2, and we shall show that a closed subspace of \mathcal{H} is pure, full, \mathfrak{A}-invariant if and only if it is pure, full, \mathfrak{B}-invariant (Proposition 3.2). Finally, we shall discuss the relation between a discrete crossed product and continuous crossed product.

2. Representation of certain von Neumann algebras to a crossed product

At first, we consider the representation of the covariance subalgebra in the case of $G = \mathbb{Z}$. Let M be a von Neumann algebra acting on a Hilbert space \mathcal{H} generated by a von Neumann algebra N and a unitary operator v satisfying $v N v^* = N$ and let \mathfrak{A} be the σ-weakly closed subalgebra of M generated by N and non-negative powers of v. We now define the notion of invariant subspaces of \mathcal{H} with respect to \mathfrak{A} as in [8]-[10].

Definition 2.1. Let \mathfrak{M} be a closed subspace of \mathcal{H}. We shall say that \mathfrak{M} is: \mathfrak{A}-invariant, if $\mathfrak{A} \mathfrak{M} \subseteq \mathfrak{M}$; reducing, if $M \mathfrak{M} \subseteq \mathfrak{M}$; pure, if \mathfrak{M} contains no non-trivial reducing subspace; and full, if the smallest reducing subspace containing \mathfrak{M} is all of \mathcal{H}.

Since $v N v^* = N$, we put $\alpha(x) = v x v^* \ (\forall x \in N)$. We recall that the crossed product $N \rtimes_\alpha \mathbb{Z}$ of N by the $*$-automorphism group $\{\alpha^n\}_{n \in \mathbb{Z}}$ is the von Neumann algebra acting on the Hilbert space $\ell^2(\mathbb{Z}, \mathcal{H})$ generated by the operators $\pi_\alpha(x) \ (\forall x \in N)$ and S defined by the equations

$$\{ \pi_\alpha(x) \xi \}(n) = \alpha^{-n}(x) \xi(n) \ \ (\forall \xi \in \ell^2(\mathbb{Z}, \mathcal{H}), \ \forall n \in \mathbb{Z})$$

and

$$\{ S \xi \}(n) = \xi(n - 1) \ \ (\forall \xi \in \ell^2(\mathbb{Z}, \mathcal{H}), \ \forall n \in \mathbb{Z}).$$

We note that the analytic crossed product $N \rtimes_\alpha \mathbb{Z}_+$ determined by N and α is defined to be the σ-weakly closed subalgebra of $N \rtimes_\alpha \mathbb{Z}$ generated by $\pi_\alpha(N)$ and the non-negative powers of S (cf. [8]-[10]). Let $\{\alpha_t\}_{t \in \mathbb{T}}$ be the $*$-automorphism group of $N \rtimes_\alpha \mathbb{Z}$ which is dual to $\{\alpha^n\}_{n \in \mathbb{Z}}$ in the sense of Takesaki [10]. Then we have

Theorem 2.2. Let M be a von Neumann algebra acting on a Hilbert space \mathcal{H} generated by a von Neumann algebra N and a unitary operator v satisfying $v N v^* = N$ and let \mathfrak{A} be the σ-weakly closed subalgebra of M generated by N and non-negative powers of v. Put $\alpha(x) = v x v^* \ (\forall x \in N)$. If there exists a pure, full, \mathfrak{A}-invariant
subspace \mathfrak{M} of \mathcal{H}, then there exist a $*$-automorphism group $\{\gamma_t\}_{t \in \mathbb{T}}$ of M and a $*$-isomorphism Φ from M onto $N \rtimes_\alpha \mathbb{Z}$ such that

$$\Phi(x) = \pi_\alpha(x) \, (\forall x \in N), \quad \Phi(v) = S \quad \text{and} \quad \Phi \circ \gamma_t = \tilde{\alpha}_t \circ \Phi \, (\forall t \in \mathbb{T}).$$

Proof. Let \mathfrak{M} be a pure, full, \mathfrak{A}-invariant subspace of \mathcal{H}. As in \cite[Proposition 3.1]{[8]}, the subspace \mathfrak{M} has the following properties:

(i) $\mathfrak{M} \subset \mathfrak{M}$,
(ii) $\bigcap_{k > 0} v^k \mathfrak{M} = \{0\}$,
(iii) $\bigcup_{k < 0} v^k \mathfrak{M} = \mathcal{H}$.

Putting $\mathfrak{F} = \mathfrak{M} \oplus v\mathfrak{M}$, we have the decomposition of the Hilbert space \mathcal{H}:

$$\mathcal{H} = \sum_{n=-\infty}^{\infty} \oplus v^n \mathfrak{F}.$$

Let P_n be the projection from \mathcal{H} onto $v^n \mathfrak{F}$. Since \mathfrak{F} is N-invariant and $vNv^* = N$, it follows that P_n belongs to the commutant of N and $\sum_{n=-\infty}^{\infty} P_n = I$. We define the one-parameter unitary group $\{V_t\}_{t \in \mathbb{T}}$ in the commutant of N defined by

$$V_t = \sum_{n=-\infty}^{\infty} e^{int} P_n \quad (\forall t \in \mathbb{T}).$$

For each $t \in \mathbb{T}$, we see that

$$vV_t v^* = \sum_{n=-\infty}^{\infty} e^{int} vP_n v^* = \sum_{n=-\infty}^{\infty} e^{int} P_{n+1}$$

$$= \sum_{n=-\infty}^{\infty} e^{i(n-1)t} P_n = e^{-it} \sum_{n=-\infty}^{\infty} e^{int} P_n = e^{-it} V_t.$$

Setting $\gamma_t(x) = V_t^* x V_t$ for each $t \in \mathbb{T}$ and $x \in M$, we see that $\{\gamma_t\}_{t \in \mathbb{T}}$ is a $*$-automorphism group of M such that $\gamma_t(v) = e^{-it} v \, (\forall t \in \mathbb{T})$. By \cite[19.9 Theorem]{[15]}, we have this proposition. \hfill \square

We now fix a pure, full, \mathfrak{A}-invariant subspace \mathfrak{M} of \mathcal{H}. Then, by Theorem 2.2, there exist a $*$-automorphism group $\{\gamma_t\}_{t \in \mathbb{T}}$ of M and a $*$-isomorphism Φ from M onto $N \rtimes_\alpha \mathbb{Z}$ such that

$$\Phi(x) = \pi_\alpha(x) \, (\forall x \in N), \quad \Phi(v) = S \quad \text{and} \quad \Phi \circ \gamma_t = \tilde{\alpha}_t \circ \Phi \, (\forall t \in \mathbb{T}).$$

On the other hand, we take another pure, full, \mathfrak{A}-invariant subspace \mathfrak{N} of \mathcal{H}. As in the proof of Theorem 2.2, there exists a unitary group $\{W_t\}_{t \in \mathbb{T}}$ in the commutant of N associated with \mathfrak{N}. Put $\rho_t(x) = W_t x W_t^*$ $(\forall x \in M)$. By Theorem 2.2, there exists a $*$-isomorphism Ψ from M onto $N \rtimes_\alpha \mathbb{Z}$ such that

$$\Psi(x) = \pi_\alpha(x) \, (\forall x \in N), \quad \Psi(v) = S \quad \text{and} \quad \Psi \circ \rho_t = \tilde{\alpha}_t \circ \Psi \, (\forall t \in \mathbb{T}).$$

Therefore, we have

$$\Phi \circ \gamma_t \circ \Phi^{-1} = \tilde{\alpha}_t = \Psi \circ \rho_t \circ \Psi^{-1} \quad (\forall t \in \mathbb{T}).$$

Since $\Phi^{-1} \circ \Psi$ is the identity map on M, we see that $\gamma_t = \rho_t \, (\forall t \in \mathbb{T})$ and so $V_t x V_t^* = W_t x W_t^* \, (\forall x \in M, \forall t \in \mathbb{T})$. Putting $A_t = W_t^* V_t \, (\forall t \in \mathbb{T})$, then A_t is the unitary operator in the commutant of M and, for all $s, t \in \mathbb{T}$, we have

$$A_t V_t^* A_s V_t = W_t^* V_t^* W_t^* V_s V_t = W_{t+s}^* V_{t+s} = A_{t+s}.$$
Thus, we have
\begin{equation}
A_{t+s} = A_t A_{\gamma^{-1}(A_s)} \quad (\forall s, t \in \mathbb{T}).
\end{equation}

The unitary family \(\{A_t\}_{t \in \mathbb{T}} \) in the commutant of \(M \) satisfying (2.1) is called a cocycle with respect to \(\mathfrak{M} \). Therefore we have

Theorem 2.3. Let \(M \) be a von Neumann algebra acting on a Hilbert space \(\mathcal{H} \) generated by a von Neumann algebra \(N \) and an unitary operator \(v \) satisfying \(vNv^* = N \) and let \(\mathfrak{A} \) be the \(\sigma \)-weakly closed subalgebra of \(M \) generated by \(N \) and non-negative powers of \(v \). Let \(\mathfrak{M} \) be a pure, full, \(\mathfrak{A} \)-invariant subspace of \(\mathcal{H} \). If \(\mathfrak{M} \) is another pure, full, \(\mathfrak{A} \)-invariant subspace of \(\mathcal{H} \), then there exists a cocycle \(\{A_t\}_{t \in \mathbb{T}} \) with respect to \(\mathfrak{M} \). Conversely, if \(\{A_t\}_{t \in \mathbb{T}} \) is a cocycle with respect to \(\mathfrak{M} \), then there exists a pure full \(\mathfrak{A} \)-invariant subspace of \(\mathcal{H} \) with the cocycle \(\{A_t\}_{t \in \mathbb{T}} \).

Proof. We only prove the converse. Assume that \(\{A_t\}_{t \in \mathbb{T}} \) is a cocycle with respect to \(\mathfrak{M} \). Put \(W_t = V_t^* A_t V_t \ (\forall t \in \mathbb{T}) \). Then we can easily check that \(\{W_t\}_{t \in \mathbb{T}} \) is a unitary group in the commutant of \(N \). Let \(W_t = \sum_{n=-\infty}^{\infty} e^{-i n t} Q_n \ (\forall t \in \mathbb{T}) \) be the spectral decomposition of \(W_t \). Putting \(\mathfrak{M} = \sum_{n=0}^{\infty} \mathfrak{B} Q_n \mathcal{H} \), then \(\mathfrak{M} \) is a pure, full, \(\mathfrak{A} \)-invariant subspace of \(\mathcal{H} \). In fact, for each \(x \in N \) and \(\xi \in \mathcal{H} \), we have \(xQ_n \xi \in \mathcal{N} \mathcal{H} \) for each \(n \) because \(W_t \) and \(A_t \) belong to \(\mathcal{N} \). Moreover, we see that
\begin{align*}
W_t vQ_n \xi & = V_t^* A_t vQ_n \xi = V_t^* v A_t Q_n \xi = e^{-it} v V_t^* A_t Q_n \xi \\
& = e^{-it} v W_t Q_n \xi = e^{-i(n+1)t} v Q_n \xi.
\end{align*}

It follows that \(v Q_n \xi \in \mathcal{Q}_{n+1} \mathcal{H} \ (\forall n \in \mathbb{N}) \). Therefore \(\mathfrak{M} \) is \(\mathfrak{A} \)-invariant. This completes the proof. \(\square \)

We next consider the case that \(G = \mathbb{R} \). Let \(\mathcal{H} \) be a von Neumann algebra acting on a Hilbert space \(\mathcal{H} \) and let \(\{u_t\}_{t \in \mathbb{R}} \) be a strongly continuous one-parameter unitary group on \(\mathcal{H} \) satisfying the condition \(u_t N u_t^* = N \ (\forall t \in \mathbb{R}) \). Let \(\mathcal{L}_0 \) be the von Neumann algebra generated by \(N \) and \(\{u_t\}_{t \in \mathbb{R}} \), and let \(\mathfrak{B} \) be the \(\sigma \)-weakly closed subalgebra of \(\mathcal{L}_0 \) generated by \(N \) and \(\{u_t\}_{t \geq 0} \).

Definition 2.4. Let \(\mathfrak{M} \) be a closed subspace of \(\mathcal{H} \). We shall say that \(\mathfrak{M} \) is: \(\mathfrak{B} \)-invariant, if \(\mathfrak{B} \mathfrak{M} \subset \mathfrak{M} \); reducing, if \(\mathcal{L}_0 \mathfrak{M} \subset \mathfrak{M} \); pure, if \(\mathfrak{M} \) contains no non-trivial reducing subspace; and full, if the smallest reducing subspace containing \(\mathfrak{M} \) is all of \(\mathcal{H} \).

Since \(u_t \) and \(N \) satisfy the condition \(u_t N u_t^* = N \ (\forall t \in \mathbb{R}) \), we can define the \(\sigma \)-weakly continuous \(* \)-automorphism \(\beta_t \) of \(N \) implemented by the unitary operator \(u_t \ (\forall t \in \mathbb{R}) \). Recall that the continuous crossed product \(N \rtimes_{\beta} \mathbb{R} \) of \(N \) by \(\{\beta_t\}_{t \in \mathbb{R}} \) is the von Neumann algebra acting on a Hilbert space \(L^2(\mathbb{R}, \mathcal{H}) \) generated by the operators \(\pi_{\beta}(x) \) and \(\lambda(t) \) defined by the equations, for \(\forall x \in N \),
\begin{align*}
\{\pi_{\beta}(x)\xi\}(t) & = \beta_{-t}(x)\xi(t) \quad (\forall \xi \in L^2(\mathbb{R}, \mathcal{H}), \ \forall t \in \mathbb{R}) \\
\{\lambda(t)\xi\}(s) & = \xi(s-t) \quad (\forall \xi \in L^2(\mathbb{R}, \mathcal{H}), \ \forall s, t \in \mathbb{R}).
\end{align*}

The analytic crossed product \(N \rtimes_{\beta} \mathbb{R} \) determined by \(N \) and \(\{\beta_t\}_{t \in \mathbb{R}} \) is defined to be the \(\sigma \)-weakly closed subalgebra of \(N \rtimes_{\beta} \mathbb{R} \) generated by \(\pi_{\beta}(N) \) and \(\{\lambda(t)\}_{t \geq 0} \).
Theorem 2.5. Let M_0 be the von Neumann algebra generated by N and a unitary group $\{u_t\}_{t \in \mathbb{R}}$ satisfying $u_t N u_t^* = N (\forall t \in \mathbb{R})$ and let \mathfrak{B} be the σ-weakly closed subalgebra of M_0 generated by N and $\{u_t\}_{t \geq 0}$. If there exists a pure, full, \mathfrak{B}-invariant subspace \mathfrak{M} of \mathcal{H}, then there exist a one-parameter group $\{\theta_t\}_{t \in \mathbb{R}}$ of $*$-automorphisms on M_0 and a $*$-isomorphism Θ from M_0 onto $N \rtimes_{\beta} \mathbb{R}$ such that

$$\Theta(x) = \pi_\beta(x) (\forall x \in N), \quad \Theta(u_t) = \lambda(t) \quad \text{and} \quad \Theta \circ \theta_t = \hat{\beta}_t \circ \Theta (\forall t \in \mathbb{R}),$$

where $\{\hat{\beta}_t\}_{t \in \mathbb{R}}$ is the $*$-automorphism of $N \rtimes_{\beta} \mathbb{R}$ which is dual to $\{\beta_t\}_{t \in \mathbb{R}}$. Further Θ maps \mathfrak{A} onto $N \rtimes_{\beta} \mathbb{R}_+$.

Proof. Let \mathfrak{M} be a pure, full, \mathfrak{B}-invariant subspace of \mathcal{H}. Then it is clear that \mathfrak{M} has the following properties:

(i) $\mathfrak{B} \mathfrak{M} \subset \mathfrak{M}$, (ii) $\bigcap_{t>0} u_t \mathfrak{M} = \{0\}$, (iii) $\bigcup_{t<0} u_t \mathfrak{M} = \mathcal{H}$.

Let P_t be the projection from \mathcal{H} onto $u_t \mathfrak{M}$ ($\forall t \in \mathbb{R}$). Since $N \mathfrak{M} \subset \mathfrak{M}$ and $N = u_t N u_t^*$, for each $t \in \mathbb{R}$, $u_t \mathfrak{M}$ is N-invariant, and so P_t belongs to N'. Since \mathfrak{M} is pure and full, we can easily check that the projections $\{P_t\}_{t \in \mathbb{R}}$ are a spectral family. Thus, we obtain the strongly continuous unitary group $\{U_t\}_{t \in \mathbb{R}}$ of N' defined by

$$U_t = \int_{\mathbb{R}} e^{-i\lambda t} dP_\lambda \quad (\forall t \in \mathbb{R}).$$

Since $u_s P_\lambda u_s = u_{\lambda-s}$, we have for every $s, t \in \mathbb{R}$,

$$u_s U_t u_s = \int_{\mathbb{R}} e^{-i\lambda t} dP_{\lambda-s} = \int_{\mathbb{R}} e^{-i\lambda t} dP_{\lambda-s}$$

$$= e^{-ist} \int_{\mathbb{R}} e^{-i\lambda t} dP_\lambda = e^{-ist} U_t.$$

Therefore $U_t x U_t^*$ $= x$ ($\forall x \in N \forall t \in \mathbb{R}$) and $U_t u_s U_t^* = e^{-ist} u_s$ ($\forall s, t \in \mathbb{R}$). Thus the $*$-automorphism group $\{\theta_t\}_{t \in \mathbb{R}}$ of M_0 defined by $\theta_t(x) = U_t x U_t^*$ ($\forall x \in M_0$, $\forall t \in \mathbb{R}$) satisfies $\theta_t(u_s) = e^{-ist} u_s$ ($\forall s, t \in \mathbb{R}$). Therefore we have the proposition from [15, 19.9 Theorem].

We now fix a pure, full, \mathfrak{B}-invariant subspace \mathfrak{M} of \mathcal{H}. As in the case of $G = \mathbb{Z}$, we can consider the notion of cocycle with respect to \mathfrak{M}. By Theorem 2.5, there exist a one-parameter group $\{\theta_t\}_{t \in \mathbb{R}}$ of $*$-automorphisms on M_0 which is implemented by the unitary group $\{U_t\}_{t \in \mathbb{R}}$ and a $*$-isomorphism Θ from M_0 onto $N \rtimes_{\beta} \mathbb{R}$ such that

$$\Theta(x) = \pi_\beta(x) (\forall x \in N), \quad \Theta(u_t) = \lambda(t) \quad \text{and} \quad \Theta \circ \theta_t = \hat{\beta}_t \circ \Theta (\forall t \in \mathbb{R}).$$

We take another pure, full, \mathfrak{B}-invariant subspace \mathfrak{N} of \mathcal{H}. As in the proof of Theorem 2.5, there exists a one-parameter unitary group $\{W_t\}_{t \in \mathbb{R}}$ associated with \mathfrak{N}. Put $\sigma_t(x) = W_t x W_t^*$ for any $x \in M_0$. Then, by Theorem 2.5, there exists a $*$-isomorphism Π from M_0 onto $N \rtimes_{\beta} \mathbb{R}$ such that

$$\Pi(x) = \pi_\beta(x) (\forall x \in N), \quad \Pi(u_t) = \lambda(t) \quad \text{and} \quad \Pi \circ \sigma_t = \hat{\beta}_t \circ \Pi (\forall t \in \mathbb{R}).$$

Put $B_t = W_t^* U_t$ ($\forall t \in \mathbb{R}$). Then B_t is a unitary operator in the commutant of M_0 satisfying $B_{t+s} = B_t \theta_{-t}(B_s)$ ($\forall s, t \in \mathbb{R}$). We shall say that the unitary family $\{B_t\}_{t \in \mathbb{R}}$ is a cocycle with respect to \mathfrak{M}. As in Theorem 2.3, we have the following:
Theorem 2.6. Let M_0 be the von Neumann algebra generated by N and a unitary group $\{u_t\}_{t \in \mathbb{R}}$ satisfying $u_t N u_t^* = N (\forall t \in \mathbb{R})$ and let \mathfrak{B} be the σ-weakly closed subalgebra of M_0 generated by N and $\{u_t\}_{t \geq 0}$. Let \mathfrak{M} be a pure, full, \mathfrak{B}-invariant subspace of \mathcal{H}. If we take another pure, full, \mathfrak{B}-invariant subspace \mathfrak{M} of \mathcal{H}, then there exists a cocycle $\{B_t\}_{t \in \mathbb{R}}$ with respect to \mathfrak{M}. Conversely, if $\{B_t\}_{t \in \mathbb{R}}$ is a cocycle with respect to \mathfrak{M}, then there exists a pure, full, \mathfrak{B}-invariant subspace of \mathcal{H} with the cocycle $\{B_t\}_{t \in \mathbb{R}}$.

3. Representation of the continuous case $G = \mathbb{R}$

Let N be a von Neumann algebra acting on a Hilbert space \mathcal{H} and let $\{u_t\}_{t \in \mathbb{R}}$ be a strongly continuous one-parameter unitary group on \mathcal{H}. We consider the von Neumann algebra M_0 generated by N and $\{u_t\}_{t \in \mathbb{R}}$, and the σ-weakly closed subalgebra \mathfrak{B} of M_0 generated by N and $\{u_t\}_{t \geq 0}$. Let A be the infinitesimal generator of $\{u_t\}_{t \in \mathbb{R}}$ defined by

$$A \xi = \lim_{t \to 0^+} \frac{u_t \xi - \xi}{t} \quad (\forall \xi \in D(A)),$$

where $D(A)$ is the set of all elements for which the limit exists. It is well-known that the Cayley transform v of A, that is, $v = (I + A)(I - A)^{-1}$, is a unitary operator on \mathcal{H}. For the unitary operator v, let M be the von Neumann algebra generated by N and v, and let \mathfrak{A} be the σ-weakly closed subalgebra generated by N and the non-negative powers of v as in §2.

The next proposition embodies an important idea of [6] and is the key result of our approach. For completeness, we give the proof.

Proposition 3.1. Keep the notations as above. Let \mathfrak{M} be a closed subspace of \mathcal{H}. Then \mathfrak{M} is \mathfrak{A}-invariant if and only if \mathfrak{M} is \mathfrak{B}-invariant.

Proof. We only need to prove that a closed subspace \mathfrak{M} of \mathcal{H} is v-invariant if and only if \mathfrak{M} is u_t-invariant for all $t > 0$. Let A be a infinitesimal generator of $\{u_t\}_{t \in \mathbb{R}}$. Setting $R(\lambda, A) = (\lambda I - A)^{-1}$, we see that

$$v = R(1, A) + AR(1, A) = 2R(1, A) - I,$$

and making use of the Laplace transform representation of $R(1, A)$, we have

$$v \xi = 2 \int_0^\infty e^{-t} u_t \xi \ dt - \xi \quad (\forall \xi \in \mathcal{H}).$$

Let $\xi \in \mathfrak{M}$. Since $u_t \xi \in \mathfrak{M}$ for all $t > 0$, we have $v \xi \in \mathfrak{M}$.

To prove the converse, we first show that $R(\lambda, A)\mathfrak{M} \subset \mathfrak{M}$ for all $\lambda > 0$. Now the resolvent is analytic on the resolvent set and can be expanded in a power series as follows:

$$R(\lambda, A) = \sum_{n=0}^{\infty} (\lambda_0 - \lambda)^n \{R(\lambda_0, A)\}^{n+1},$$

valid for $|\lambda_0 - \lambda| |R(\lambda_0, A)| < 1$. For $\lambda_0 > 0$, we have $|R(\lambda_0, A)| \leq \frac{1}{\lambda_0}$ so that the above series holds for $|\lambda - \lambda_0| < \lambda_0$. It follows from this expansion that $R(\lambda_0, A)\mathfrak{M} \subset \mathfrak{M}$ implies $R(\lambda, A)\mathfrak{M} \subset \mathfrak{M}$ for all $|\lambda - \lambda_0| < \lambda_0$. Assuming $v\mathfrak{M} \subset \mathfrak{M}$, one infers from (3.1) that $R(1, A)\mathfrak{M} \subset \mathfrak{M}$ and hence by a stepwise process using (3.3) that
\(R(\lambda, A)M \subset \mathcal{M} \) for all \(\lambda > 0 \). Hence for \(\xi \) in \(\mathcal{M} \) and \(\eta \) in the orthogonal complement of \(\mathcal{M} \)

\[
0 = \langle R(\lambda, A)\xi, \eta \rangle = \int_0^\infty e^{-\lambda t} \langle u_t \xi, \eta \rangle \, dt \quad (\forall \lambda > 0).
\]

By the Laplace transform uniqueness theorem, we have \(\langle u_t \xi, \eta \rangle = 0 \) and hence \(u_t \mathcal{M} \subset \mathcal{M} \) for all \(t > 0 \). This completes the proof. \(\square \)

From Proposition 3.1, we have the following:

Proposition 3.2. Keep the notation as above. Then

(i) \(\mathcal{M} = \mathcal{M}_0 \). Moreover, if \(\mathcal{M}_0 \) has a separating vector, then \(\mathfrak{A} = \mathfrak{B} \).

(ii) A closed subspace \(\mathcal{M} \) of \(\mathcal{H} \) is pure, full, \(\mathfrak{A} \)-invariant if and only if \(\mathcal{M} \) is pure, full, \(\mathfrak{B} \)-invariant.

Proof. We only prove (i). By Proposition 3.1, a closed subspace \(\mathcal{M} \) is reducing for \(\mathcal{M} \) if and only if \(\mathcal{M} \) is reducing for \(\mathcal{M}_0 \). Hence the commutant of \(\mathcal{M} \) is equal to the commutant of \(\mathcal{M}_0 \), and so \(\mathcal{M} = \mathcal{M}_0 \).

We next prove that \(\mathfrak{A} = \mathfrak{B} \). To do this, we need the following notations. If \(\mathfrak{C} \) is an algebra of \(\mathcal{M}_0 \) and \(\mathfrak{L} \) is a lattice of projections in \(B(\mathcal{H}) \), then we write

\[
\text{Lat}\mathfrak{C} = \{ P \in B(\mathcal{H})_p \mid (I - P)TP = 0, \forall T \in \mathfrak{C} \}
\]

and

\[
\text{AlgLat}\mathfrak{L} = \{ T \in B(\mathcal{H}) \mid (I - P)TP = 0, \forall P \in \mathfrak{L} \},
\]

where \(B(\mathcal{H})_p \) is the set of all projections in \(B(\mathcal{H}) \).

By Proposition 3.1, it is clear that \(\text{Lat}\mathfrak{A} = \text{Lat}\mathfrak{B} \). Since \(\text{AlgLat}\mathfrak{B} \) contains \(\mathfrak{B} \), we have the following inclusions:

\[
\mathfrak{A} \subset \mathfrak{B} \subset \text{AlgLat}\mathfrak{A}.
\]

If \(\mathfrak{A} \subset \text{AlgLat}\mathfrak{A} \), then there exists a non-zero element \(x \in \text{AlgLat}\mathfrak{A} \) such that \(x \notin \mathfrak{A} \). Hence there is a normal linear functional \(\phi \) in the predual \((\mathcal{M}_0)^* \) of \(\mathcal{M}_0 \) such that \(\phi(x) = 1 \) and \(\phi|\mathfrak{A} = 0 \). Since \(\mathcal{M}_0 \) has a separating vector, by [7, Corollary 1.13.7], there are non-zero vectors \(\xi \) and \(\eta \) in \(\mathcal{H} \) such that \(\phi(\xi) = \langle y\xi, \eta \rangle \) \((\forall y \in \mathcal{M}) \). Hence, for each \(y \in \mathfrak{A} \), we have

\[
\langle y\xi, \eta \rangle = \phi(y) = 0.
\]

This implies that \([\mathfrak{A}\xi] \perp \eta \), where \([\mathfrak{A}\xi] \) denotes the closed subspace of \(\mathcal{H} \) spanned by \(\mathfrak{A}\xi \). Since \([\mathfrak{A}\xi] \subset \text{Lat}\mathfrak{A} \) and \(x \in \text{AlgLat}\mathfrak{A} \), \(x\xi \) belongs to \([\mathfrak{A}\xi] \). This implies that

\[
1 = \phi(x) = \langle x\xi, \eta \rangle = 0.
\]

This is a contradiction and so \(\mathfrak{A} = \mathfrak{B} \). This completes the proof. \(\square \)

We remark that if the commutant of a von Neumann algebra \(\mathcal{M}_0 \) is properly infinite, then \(\mathcal{M}_0 \) always has a separating vector (cf. [1, Corollary 11]).

We now consider the case that \(\mathfrak{N} \) and \(u_t \) satisfy the condition \(u_t \mathfrak{N}u_t^* = \mathfrak{N} \) \((\forall t \in \mathbb{R}) \). If there exists a pure, full, \(\mathfrak{B} \)-invariant subspace \(\mathcal{M} \) of \(\mathcal{H} \), then, by Theorem 2.5, \(\mathcal{M}_0 \) is \(* \)-isomorphic to a continuous crossed product. Moreover, from
onto

However, Katayama showed in [4, Theorem 3.5] that if there exists a \(t \in \mathbb{R} \) such that \((N_{t}, \varphi_{N})\) does not satisfy the condition \(\varphi_{N}^{\ast} = N \), then \(M \) is \(* \)-isomorphic to a discrete crossed product. So it is natural to ask when \(N \) and \(\varphi \) satisfy the condition \(\varphi_{N}^{\ast} = N \). Recall that the unitary operator \(\varphi \) has the following form:

\[
\varphi_{t} = 2 \int_{0}^{\infty} e^{-t} u_{t} \xi dt - \xi \quad (\forall \xi \in \mathcal{H}).
\]

It is clear that if, for every \(t \in \mathbb{R} \), \(u_{t} \) belongs to the commutant of \(N \), then \(\varphi \) is also in \(N' \). In this case, \(\varphi \) and \(N \) satisfy the condition \(\varphi_{N}^{\ast} = N \). But, in general, \(\varphi \) and \(N \) do not satisfy the condition \(\varphi_{N}^{\ast} = N \). In fact, we can give the following:

Example 3.3. Let \(N \) be a von Neumann algebra acting on a Hilbert space \(\mathcal{H} \) and let \(\{ \beta_{t} \}_{t \in \mathbb{R}} \) be a \(*\)-automorphism group of \(N \) such that there exists a \(t_{0} \in \mathbb{R} \) such that \(\beta_{t_{0}} \) is outer. Recall that a continuous crossed product \(N \rtimes_{\beta_{t}} \mathbb{R} \) is the von Neumann algebra generated by \(\pi_{\beta}(N) \) and \(\{ \lambda(t) \}_{t \in \mathbb{R}} \). For each \(x \in N \) and \(t \in \mathbb{R} \), it is clear that

\[
\pi_{\beta}(\beta_{t}(x)) = \lambda(t) \pi_{\beta}(x) \lambda(t)^{\ast}
\]

and

\[
\pi_{\beta}(N) = \lambda(t) \pi_{\beta}(N) \lambda(t)^{\ast} \quad (\forall t \in \mathbb{R}).
\]

For the unitary group \(\{ \lambda(t) \}_{t \in \mathbb{R}} \), we obtain the unitary operator \(\varphi \) defined by the form

\[
\varphi_{t} = 2 \int_{0}^{\infty} e^{-t} \lambda(t) \xi dt - \xi \quad (\forall \xi \in L^{2}(\mathbb{R}, \mathcal{H})).
\]

By choosing an appropriate representation for \(N \rtimes_{\beta} \mathbb{R} \), we shall assume that \(N \rtimes_{\beta} \mathbb{R} \) has a separating vector. In this case, by Proposition 3.2, the von Neumann algebra generated by \(\pi_{\beta}(N) \) and \(\varphi \) coincides with \(N \rtimes_{\beta} \mathbb{R} \), and the \(\sigma \)-weakly closed subalgebra generated by \(\pi_{\beta}(N) \) and the non-negative powers of \(\varphi \) also coincides with \(N \rtimes_{\beta} \mathbb{R}_{+} \). Hence, by Theorem 2.2, if \(\pi_{\beta}(N) \) and \(\varphi \) satisfy the condition \(\varphi \pi_{\beta}(N) \varphi^{\ast} = \pi_{\beta}(N) \), then there is a \(*\)-isomorphism \(\Phi \) from \(N \rtimes_{\beta} \mathbb{R} \) onto \(N \rtimes_{\alpha} \mathbb{Z} \) such that \(\Phi(N \rtimes_{\beta} \mathbb{R}_{+}) = N \rtimes_{\alpha} \mathbb{Z}_{+} \) for some \(*\)-automorphism \(\alpha \) of \(N \). Since there exists a faithful normal canonical conditional expectation of \(N \rtimes_{\alpha} \mathbb{Z} \) onto \(\pi_{\alpha}(N) \) (cf. [8–10]), there is a faithful normal conditional expectation of \(N \rtimes_{\beta} \mathbb{R} \) onto \(\pi_{\beta}(N) \). However, Katayama showed in [4] Theorem 3.5 that if there exists a \(t_{0} \in \mathbb{R} \) such that \(\beta_{t_{0}} \) is outer, then there does not exist any normal conditional expectation of \(N \rtimes_{\beta} \mathbb{R} \) onto \(\pi_{\beta}(N) \), which is a contradiction. Hence, \(\pi_{\beta}(N) \) and \(\varphi \) do not satisfy the condition \(\varphi \pi_{\beta}(N) \varphi^{\ast} = \pi_{\beta}(N) \).

Finally, we discuss the relation between a continuous crossed product and a discrete crossed product.

Theorem 3.4. If a crossed product \(N \rtimes_{\beta} \mathbb{R} \) admits a separating vector (for example, \(N \rtimes_{\beta} \mathbb{R} \) is properly infinite), then the following two conditions are equivalent:

(i) There exists a \(*\)-isomorphism \(\Phi \) from \(N \rtimes_{\beta} \mathbb{R} \) onto \(N \rtimes_{\alpha} \mathbb{Z} \) such that \(\Phi(N \rtimes_{\beta} \mathbb{R}_{+}) = N \rtimes_{\alpha} \mathbb{Z}_{+} \) for some \(*\)-automorphism \(\alpha \) of \(N \).

(ii) \(\beta_{t} \) is inner for all \(t \in \mathbb{R} \).

Proof. (i) \(\Rightarrow \) (ii) Since \(\Phi \) is the \(*\)-isomorphism satisfying \(\Phi(N \rtimes_{\beta} \mathbb{R}_{+}) = N \rtimes_{\alpha} \mathbb{Z}_{+} \), we have \(\Phi(\pi_{\beta}(N)) = \pi_{\alpha}(N) \). Since there exists a normal conditional expectation of \(N \rtimes_{\alpha} \mathbb{Z} \) onto \(\pi_{\alpha}(N) \), there also exists a normal conditional expectation of \(N \rtimes_{\beta} \mathbb{R} \) onto \(\pi_{\beta}(N) \). Hence, by [4] Theorem 3.6, we have that \(\beta_{t} \) is inner for each \(t \in \mathbb{R} \).
(ii) ⇒ (i) Since βt is inner for all $t \in \mathbb{R}$, there exists a unitary operator v_t in N such that β_t is implemented by the unitary operator v_t. Putting $u_t = \lambda(t)\pi_\beta(v_t)^*$ for all $t \in \mathbb{R}$, we can show that $\{u_t\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group in $\pi_\beta(N)'$. Moreover, we see that the von Neumann algebra generated by $\pi_\beta(N)$ and $\{u_t\}_{t \in \mathbb{R}}$ is equal to $N \rtimes_{\beta} \mathbb{R}$. Similarly, the σ-weakly closed subalgebra of $N \rtimes_{\beta} \mathbb{R}$ generated by $\pi_\beta(N)$ and $\{u_t\}_{t > 0}$ is $N \rtimes_{\beta} \mathbb{R}^+$. For the unitary group $\{u_t\}_{t \in \mathbb{R}}$, we can construct the unitary operator v on $L^2(\mathbb{R}, \mathcal{H})$ as follows:

$$v\xi = 2\int_0^\infty e^{-t}u_t\xi dt - \xi \quad (\forall \xi \in L^2(\mathbb{R}, \mathcal{H}))$$

Since $N \rtimes_{\beta} \mathbb{R}$ admits a separating vector, by Proposition 3.2, $N \rtimes_{\beta} \mathbb{R}$ is also generated by $\pi_\beta(N)$ and v, and $N \rtimes_{\beta} \mathbb{R}^+$ is generated by $\pi_\beta(N)$ and the non-negative powers of v. Since, for every $t \in \mathbb{R}$, u_t belongs to the commutant of $\pi_\beta(N)$, v is also in $\pi_\beta(N)'$. Thus v and $\pi_\beta(N)$ satisfy the condition $v\pi_\beta(N)v^* = \pi_\beta(N)$. Putting $\mathcal{M} = L^2(\mathbb{R}^+, \mathcal{H})$, it is clear that \mathcal{M} is a pure, full, $N \rtimes_{\beta} \mathbb{R}^+$-invariant subspace of $L^2(\mathbb{R}, \mathcal{H})$. For each $t \in \mathbb{R}$, we have

$$u_t\mathcal{M} = \lambda(t)\pi_\beta(v_t)^*\mathcal{M} \subset \lambda(t)\mathcal{M} = \pi_\beta(v_t)^*\pi_\beta(v_t)\mathcal{M} \subset u_t\mathcal{M}.$$

It follows that $u_t\mathcal{M} = (\lambda(t)\mathcal{M})$ ($\forall t \in \mathbb{R}$), and so \mathcal{M} is pure and full for $\{u_t\}_{t \in \mathbb{R}}$. Therefore, by Proposition 3.2, \mathcal{M} is also pure and full for v. Thus, by Theorem 2.2, we have (i). This completes the proof.

\[\square\]

References

Department of Mathematics, General Education, Tsuruoka National College of Technology, Tsuruoka, 997-8511, Japan
E-mail address: ohwada@tsuruoka-nct.ac.jp

Department of Mathematics, Shaanxi Normal University, Xian, 710062, Shaanxi, People’s Republic of China
E-mail address: gxji@dns.snnu.edu.cn

Department of Mathematics, Faculty of Science, Niigata University, Niigata, 950-21, Japan
E-mail address: saito@math.sc.niigata-u.ac.jp