A note on the Nakai conjecture
HTML articles powered by AMS MathViewer
- by Paulo Brumatti, Yves Lequain, Daniel Levcovitz and Aron Simis
- Proc. Amer. Math. Soc. 130 (2002), 15-21
- DOI: https://doi.org/10.1090/S0002-9939-01-05983-4
- Published electronically: April 26, 2001
- PDF | Request permission
Abstract:
The conjectures of Zariski–Lipman and of Nakai are still open in general in the class of rings essentially of finite type over a field of characteristic zero. However, they have long been known to be true in dimension one. Here we give counterexamples to both conjectures in the class of one-dimensional pseudo-geometric local domains that contain a field of characteristic zero. Likewise, in connection with a recent result of Traves on the Nakai conjecture, we also show that their hypothesis of finite generation of the integral closure cannot be removed even in the class of local domains containing a field of characteristic zero.References
- James Ax, On Schanuel’s conjectures, Ann. of Math. (2) 93 (1971), 252–268. MR 277482, DOI 10.2307/1970774
- K. R. Goodearl and T. H. Lenagan, Constructing bad Noetherian local domains using derivations, J. Algebra 123 (1989), no. 2, 478–495. MR 1000498, DOI 10.1016/0021-8693(89)90057-4
- A. Grothendieck, Éléments de Géométrie Algèbrique, 4ième Partie, IHES, Publications Mathématiques, 1967.
- Joseph Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874–898. MR 186672, DOI 10.2307/2373252
- A. K. Maloo, Differential simplicity and the module of derivations, J. Pure Appl. Algebra 115 (1997), 81–85.
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Kenneth R. Mount and O. E. Villamayor, On a conjecture of Y. Nakai, Osaka Math. J. 10 (1973), 325–327. MR 327731
- Yoshikazu Nakai, High order derivations. I, Osaka Math. J. 7 (1970), 1–27. MR 263804
- C. J. Rego, Remarks on differential operators on algebraic varieties, Osaka Math. J. 14 (1977), no. 3, 481–486. MR 506250
- A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167–173. MR 188247
- William N. Traves, Nakai’s conjecture for varieties smoothed by normalization, Proc. Amer. Math. Soc. 127 (1999), no. 8, 2245–2248. MR 1486755, DOI 10.1090/S0002-9939-99-04820-0
Bibliographic Information
- Paulo Brumatti
- Affiliation: IMECC–UNICAMP, 13081-970 Campinas, São Paulo, Brazil
- Email: brumatti@ime.unicamp.br
- Yves Lequain
- Affiliation: Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, J. Botânico, 22460-320, Rio de Janeiro, RJ, Brazil
- Email: ylequain@impa.br
- Daniel Levcovitz
- Affiliation: Instituto de Ciências Matemáticas e de Computação, USP-SC, Av. Dr. Carlos Botelho, 1465, 13560-970 São Carlos, SP, Brazil
- Email: lev@icmsc.sc.usp.br
- Aron Simis
- Affiliation: Departamento de Matemática, CCEN, Universidade Federal de Pernambuco, 50740-540 Recife, PE, Brazil
- MR Author ID: 162400
- Email: aron@dmat.ufpe.br
- Received by editor(s): January 11, 2000
- Received by editor(s) in revised form: May 19, 2000
- Published electronically: April 26, 2001
- Additional Notes: The authors were partially supported by CNPq and by a grant from the group ALGA-PRONEX/MCT
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 15-21
- MSC (2000): Primary 13M05, 13M10, 13N15, 13B22; Secondary 14F10, 12H05, 13B25, 13F25
- DOI: https://doi.org/10.1090/S0002-9939-01-05983-4
- MathSciNet review: 1855614