On unknotting numbers and four-dimensional clasp numbers of links
HTML articles powered by AMS MathViewer
- by Tomomi Kawamura
- Proc. Amer. Math. Soc. 130 (2002), 243-252
- DOI: https://doi.org/10.1090/S0002-9939-01-06000-2
- Published electronically: May 7, 2001
- PDF | Request permission
Abstract:
In this paper, we estimate the unknotting number and the four-dimensional clasp number of a link, considering the greatest euler characteristic for an oriented two-manifold in the four-ball bounded by the link. Combining with a result due to Rudolph, we prove that an inequality stronger than the Bennequin unknotting inequality actually holds for any link diagram. As an application we show the equality conjectured by Boileau and Weber for a closed positive braid diagram.References
- D. Auckly, Surgery, knots, and the Seiberg-Witten equations, Lectures for the 1995 TGRCIW, preprint.
- Daniel Bennequin, Entrelacements et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982) Astérisque, vol. 107, Soc. Math. France, Paris, 1983, pp. 87–161 (French). MR 753131
- Michel Boileau and Claude Weber, Le problème de J. Milnor sur le nombre gordien des nœuds algébriques, Enseign. Math. (2) 30 (1984), no. 3-4, 173–222 (French). MR 767901
- Robert E. Gompf, Smooth concordance of topologically slice knots, Topology 25 (1986), no. 3, 353–373. MR 842430, DOI 10.1016/0040-9383(86)90049-2
- Tomomi Kawamura, The unknotting numbers of $10_{139}$ and $10_{152}$ are $4$, Osaka J. Math. 35 (1998), no. 3, 539–546. MR 1648364
- —, Lower bounds for the unknotting numbers of the knots obtained from certain links, Knots in Hellas ’98: Proc. of the International Conference on Knot Theory and Its Ramifications (C. Gordon, et al., eds.), Ser. Knots Everything 24, World Sci. Publ., Singapore, 2000, 203–207.
- P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces. I, Topology 32 (1993), no. 4, 773–826. MR 1241873, DOI 10.1016/0040-9383(93)90051-V
- P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces. II, Topology 34 (1995), no. 1, 37–97. MR 1308489, DOI 10.1016/0040-9383(94)E0003-3
- P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), no. 6, 797–808. MR 1306022, DOI 10.4310/MRL.1994.v1.n6.a14
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- Katura Miyazaki and Akira Yasuhara, Generalized $\#$-unknotting operations, J. Math. Soc. Japan 49 (1997), no. 1, 107–123. MR 1419441, DOI 10.2969/jmsj/04910107
- John W. Morgan, Zoltán Szabó, and Clifford Henry Taubes, A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996), no. 4, 706–788. MR 1438191
- Hitoshi Murakami and Akira Yasuhara, Four-genus and four-dimensional clasp number of a knot, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3693–3699. MR 1690998, DOI 10.1090/S0002-9939-00-05461-7
- Takuji Nakamura, Four-genus and unknotting number of positive knots and links, Osaka J. Math. 37 (2000), no. 2, 441–451. MR 1772843
- Lee Rudolph, Algebraic functions and closed braids, Topology 22 (1983), no. 2, 191–202. MR 683760, DOI 10.1016/0040-9383(83)90031-9
- Lee Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 51–59. MR 1193540, DOI 10.1090/S0273-0979-1993-00397-5
- Lee Rudolph, Quasipositive plumbing (constructions of quasipositive knots and links. V), Proc. Amer. Math. Soc. 126 (1998), no. 1, 257–267. MR 1452826, DOI 10.1090/S0002-9939-98-04407-4
- Lee Rudolph, Positive links are strongly quasipositive, Proceedings of the Kirbyfest (Berkeley, CA, 1998) Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 555–562. MR 1734423, DOI 10.2140/gtm.1999.2.555
- Tetsuo Shibuya, Some relations among various numerical invariants for links, Osaka Math. J. 11 (1974), 313–322. MR 353295
- A. Stoimenow, Positive knots, closed braids and the Jones polynomial, preprint (1999).
- Toshifumi Tanaka, Unknotting numbers of quasipositive knots, Topology Appl. 88 (1998), no. 3, 239–246. MR 1632085, DOI 10.1016/S0166-8641(97)00172-7
- Pierre Vogel, Representation of links by braids: a new algorithm, Comment. Math. Helv. 65 (1990), no. 1, 104–113. MR 1036132, DOI 10.1007/BF02566597
- Shuji Yamada, The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987), no. 2, 347–356. MR 894383, DOI 10.1007/BF01389082
Bibliographic Information
- Tomomi Kawamura
- Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914, Japan
- Email: kawamura@ms.u-tokyo.ac.jp
- Received by editor(s): October 4, 1999
- Received by editor(s) in revised form: May 12, 2000
- Published electronically: May 7, 2001
- Additional Notes: The author was partially supported by JSPS Research Fellowships for Young Scientists
- Communicated by: Ronald A. Fintushel
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 243-252
- MSC (2000): Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-01-06000-2
- MathSciNet review: 1855642