The root lattice $A^*_n$ and Ramanujan’s circular summation of theta functions
HTML articles powered by AMS MathViewer
- by Kok Seng Chua
- Proc. Amer. Math. Soc. 130 (2002), 1-8
- DOI: https://doi.org/10.1090/S0002-9939-01-06080-4
- Published electronically: May 3, 2001
- PDF | Request permission
Abstract:
We relate a formula of Ramanujan on the circular summation of the $n$th power of theta functions, $F_n(q)$, to the theta series of the root lattice $A^*_n$. We then use properties of the lattice to show that $F_n$ includes an $\operatorname {SL}_2(\mathbf {Z})$ modular form when $n$ is an odd perfect square as well as to derive a very simple expression for $F_9(q)$.References
- Scott Ahlgren, The sixth, eighth, ninth, and tenth powers of Ramanujan’s theta function, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1333–1338. MR 1646322, DOI 10.1090/S0002-9939-99-05181-3
- Bruce C. Berndt, Ramanujan’s theory of theta-functions, Theta functions: from the classical to the modern, CRM Proc. Lecture Notes, vol. 1, Amer. Math. Soc., Providence, RI, 1993, pp. 1–63. MR 1224050, DOI 10.1090/crmp/001/01
- J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), no. 2, 691–701. MR 1010408, DOI 10.1090/S0002-9947-1991-1010408-0
- K. Chandrasekharan, Elliptic functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396, DOI 10.1007/978-3-642-52244-4
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- Ken Ono, On the circular summation of the eleventh powers of Ramanujan’s theta function, J. Number Theory 76 (1999), no. 1, 62–65. MR 1688192, DOI 10.1006/jnth.1998.2354
- Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR 947735
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- Seung Hwan Son, Circular Summation of Theta Functions in Ramanujan’s Lost Notebook, preprint.
- Neil J. A. Sloane, Neil Sloane’s On-Line Encyclopedia of Integer Sequence, http://www.att.research.com/~njas/sequences/index.html.
Bibliographic Information
- Kok Seng Chua
- Affiliation: Institute of High Performance Computing, 89C Science Park Driver, #02-11/12 The Rutherford, Singapore 118261
- Email: chuaks@ihpc.nus.edu.sg
- Received by editor(s): May 12, 2000
- Published electronically: May 3, 2001
- Communicated by: David E. Rohrlich
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1-8
- MSC (2000): Primary 11B65, 11E20
- DOI: https://doi.org/10.1090/S0002-9939-01-06080-4
- MathSciNet review: 1855612