On the boundedness of the non-centered Gaussian Hardy-Littlewood maximal function
Authors:
Liliana Forzani, Roberto Scotto, Peter Sjögren and Wilfredo Urbina
Journal:
Proc. Amer. Math. Soc. 130 (2002), 73-79
MSC (1991):
Primary 42B25; Secondary 58C05, 60H99
DOI:
https://doi.org/10.1090/S0002-9939-01-06156-1
Published electronically:
May 3, 2001
MathSciNet review:
1855622
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
The purpose of this paper is to prove the boundedness, for
, of the non-centered Hardy-Littlewood maximal operator associated with the Gaussian measure
.
- 1. Benjamin Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231–242. MR 249917, https://doi.org/10.1090/S0002-9947-1969-0249917-9
- 2. Peter Sjögren, A remark on the maximal function for measures in 𝑅ⁿ, Amer. J. Math. 105 (1983), no. 5, 1231–1233. MR 714775, https://doi.org/10.2307/2374340
- 3. Sjögren, P. and Soria, F., Sharp estimates for the noncentered maximal operator associated to Gaussian and other radial measures. Preprint.
- 4. Ana M. Vargas, On the maximal function for rotation invariant measures in 𝑅ⁿ, Studia Math. 110 (1994), no. 1, 9–17. MR 1279371, https://doi.org/10.4064/sm-110-1-9-17
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42B25, 58C05, 60H99
Retrieve articles in all journals with MSC (1991): 42B25, 58C05, 60H99
Additional Information
Liliana Forzani
Affiliation:
Department of Mathematics, Universidad Nacional del Litoral and CONICET, Argentina
Email:
forzani@pemas.unl.edu.ar
Roberto Scotto
Affiliation:
Department of Mathematics, Universidad Nacional de Salta, Argentina
Email:
scotto@math.unl.edu.ar
Peter Sjögren
Affiliation:
Department of Mathematics, Göteborg University, SE-412 96 Göteborg, Sweden
Email:
peters@math.chalmers.se
Wilfredo Urbina
Affiliation:
School of Mathematics, Universidad Central de Venezuela, Caracas 1040, Venezuela
Email:
wurbina@euler.ciens.ucv.ve
DOI:
https://doi.org/10.1090/S0002-9939-01-06156-1
Keywords:
Fourier analysis,
Gaussian measure,
maximal function
Received by editor(s):
May 15, 2000
Published electronically:
May 3, 2001
Additional Notes:
The fourth author was partially supported by CONICIT grant #6970068
Communicated by:
David Preiss
Article copyright:
© Copyright 2001
American Mathematical Society