EXPLICIT EVALUATIONS OF A RAMANUJAN-SELBERG CONTINUED FRACTION

LIANG-CHENG ZHANG

(Communicated by David E. Rohrlich)

To the memory of my father, Professor Guang-Da Zhang

Abstract. This paper gives explicit evaluations for a Ramanujan-Selberg continued fraction in terms of class invariants and singular moduli.

§1. Introduction

Let, for $|q| < 1$,

\begin{equation}
N(q) = 1 + \frac{q}{1 + \frac{q + q^2}{1 + \frac{q^3 + q^4}{1 + \cdots}}}.
\end{equation}

Set

\begin{equation}
(a; q)_\infty := \prod_{k=1}^{\infty} (1 - aq^{k-1}).
\end{equation}

In his notebooks \cite{14}, p. 290, Ramanujan asserted that

\begin{equation}
N(q) = \frac{(-q; q^2)_\infty}{(-q^2; q^2)_\infty}.
\end{equation}

This formula was first proved in print by A. Selberg \cite{18}. Other proofs have been given by K. G. Ramanathan \cite{12}, G. Andrews et al. \cite{11} and the author \cite{21}.

In his "Lost" Notebooks \cite{16}, p. 44, Ramanujan also stated that if $|q| < 1$, and

\begin{equation}
L(q) = 1 + \frac{q^2}{1 + \frac{q + q^3}{1 + \frac{q^4}{1 + \cdots}}},
\end{equation}

then

\begin{equation}
L(q) = \frac{(-q; q^2)_\infty}{(-q^2; q^2)_\infty}.
\end{equation}

Here, we just point out that (1.5) can be proved by using the well-known Heine \cite{10} continued fraction formula in the same fashion as the proof of (1.3) in the author’s paper \cite{21}. Set, for $|q| < 1$,

\begin{equation}
S_1(q) = \frac{q^{1/8}}{1 + \frac{q}{1 + \frac{q + q^2}{1 + \frac{q^3 + q^4}{1 + \cdots}}}.
\end{equation}

Received by the editors May 16, 2000.

1991 Mathematics Subject Classification. Primary 11A55, 11Y65, 30B70.

Key words and phrases. Continued fraction, class invariant, singular modulus.

Supported in part by an SMSU Faculty Summer Fellowship, 1999.

©2001 American Mathematical Society
From (1.1), (1.3) and (1.5), we have
\begin{equation}
S_1(q) = \frac{q^{1/8}}{N(q)} = \frac{q^{1/8}(-q^2;q^2)_\infty}{(-q;q^2)_\infty}.
\end{equation}
We call $S_1(q)$ the Ramanujan-Selberg continued fraction.

Also, set
\begin{equation}
S_2(q) = \frac{q^{1/8}}{1 + \frac{-q}{1 + \frac{-q + q^2}{1 + \frac{-q^3}{1 + \frac{q^2 + q^4}{1 + \cdots}}}}},
\end{equation}
Replacing q by $-q$ in (1.1) and (1.3), one can see that
\begin{equation}
S_2(q) = \frac{q^{1/8}}{N(-q)} = \frac{q^{1/8}(-q^2;q^2)_\infty}{(q;q^2)_\infty}.
\end{equation}
The famous Rogers-Ramanujan continued fraction is defined by
\begin{equation}
F(q) = \frac{q^{1/5}}{1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \frac{q^4}{1 + \cdots}}}}},
\end{equation}
and let $S(q) = -F(-q)$. In his first letter to G. H. Hardy, Ramanujan asserted that
\begin{equation}
F(e^{-2\pi}) = \sqrt{\frac{5 + \sqrt{5}}{2}} - \frac{\sqrt{5} + 1}{2},
\end{equation}
\begin{equation}
S(e^{-\pi}) = \sqrt{\frac{5 - \sqrt{5}}{2}} - \frac{\sqrt{5} - 1}{2},
\end{equation}
and
\begin{equation}
F(e^{-\pi\sqrt{n}}) \text{ can be exactly found if } n \text{ is any positive rational quantity.}
\end{equation}
Identities (1.11) and (1.12) were first proved by G. N. Watson [19]. Watson vaguely discussed (1.13) and merely claimed that $F(e^{-\pi\sqrt{n}})$ is an algebraic number.

Ramanathan [13] computed $F(e^{-2\pi\sqrt{n}})$ and $S(e^{-\pi\sqrt{n}})$ for several positive rational numbers n for which the ideal class groups of $K = \mathbb{Q}(\sqrt{-n})$ have the property that each genus contains a single class. By using Weber-Ramanujan’s class invariants and a modular equation of degree 5, Berndt, Chan and the author [4] were able to establish general formulas for $F(e^{-2\pi\sqrt{n}})$ and $S(e^{-\pi\sqrt{n}})$.

The aim of this note is to establish general formulas for the Ramanujan-Selberg continued fraction and its companion in terms of class invariants, or equivalently in terms of singular moduli.

\section{Explicit Formulas for $S_1(q)$ and $S_2(q)$}

For $q = \exp(-\pi\sqrt{n})$, where n is positive rational, let
\begin{equation}
G_n := 2^{-1/4}q^{1/24}(-q;q^2)_\infty
\end{equation}
and
\begin{equation}
g_n := 2^{-1/4}q^{1/24}(q;q^2)_\infty.
\end{equation}
We shall refer to G_n and g_n as the \textit{Ramanujan-Weber class invariants}, which can be roughly viewed as generators of the Hilbert class field of the complex quadratic field of $K = \mathbb{Q}(\sqrt{-n})$. The reader is referred to the important paper of B. Birch [7] and the excellent books of Cox [9] and Lang [11]. We also use modular equations in
the sequel, and refer to [2, pp. 213, 214] for this terminology. The singular modulus
\(\alpha := \alpha_n \) is that unique positive number \(\alpha_n \) between 0 and 1 satisfying

\[
\sqrt{n} = \frac{2F_1\left(1; 1; 1; 1 - \alpha_n\right)}{2F_1\left(1; 1; 1; \alpha_n\right)},
\]

where \(2F_1 \) is the hypergeometric function. Moreover (cf. [2, p. 102]),

\[
2F_1\left(1; 1; 1/2; 1/2; 1; \alpha\right) = \frac{2}{\pi} \int_0^\pi \frac{d\phi}{\sqrt{1 - \alpha \sin^2 \phi}}.
\]

Then we have [3, p. 185]

\[
G_n = (4\alpha_n(1 - \alpha_n))^{-1/24}
\]

and

\[
g_n = (4\alpha_n(1 - \alpha_n)^2)^{-1/24}.
\]

Let \(\alpha \) and \(\beta \) be moduli. We say that \(\beta \) is of degree \(d \) over \(\alpha \) if

\[
\frac{2F_1\left(1; 1; 1; 1 - \beta\right)}{2F_1\left(1; 1; 1; \beta\right)} = d \frac{2F_1\left(1; 1; 1; 1 - \alpha\right)}{2F_1\left(1; 1; 1; \alpha\right)}.
\]

Therefore, if \(\alpha = \alpha_n \) and \(\beta \) is of degree \(d \) over \(\alpha \), then, by (2.3), \(\beta = \alpha d_{4n} \). A modular equation of second degree is an equation connecting \(\alpha = \alpha_n \) and \(\beta = \alpha_{4n} \) which will be used in our proofs.

Theorem (modular equations of second degree [2, p. 214]). Let \(\beta \) be of second degree over \(\alpha \) and

\[
m = \frac{2F_1\left(1; 1; 1; \alpha\right)}{2F_1\left(1; 1; 1; \beta\right)}.
\]

Then

\[
m\sqrt{1 - \alpha} + \sqrt{\beta} = 1
\]

and

\[
m^2(1 - \alpha) + \beta = 1.
\]

Now, we state and prove the main theorems.

Theorem 2.1. Let \(q = e^{-\pi\sqrt{n}} \) and \(\alpha = \alpha_n \). Then

\[
S_1(q) = \frac{q^{1/8}}{\sqrt{2}}.
\]

Proof. First, it is easy to show that (cf. [2, p. 37, (22.3)])

\[
(-q^2; q^2)_{\infty} = \frac{1}{(q^2; q^4)_{\infty}},
\]

which is a very famous theorem of Euler. By (1.7), (2.11), (2.1) and (2.2) we have

\[
S_1(q) = \frac{q^{1/8}}{(-q^2; q^2)_{\infty}} = \frac{1}{\sqrt{2G_n g_{4n}}}.
\]

Set \(\alpha = \alpha_n \) and \(\beta = \alpha_{4n} \). Then \(\beta \) is of second degree over \(\alpha \). From (2.8) and (2.9), we find that

\[
\sqrt{\beta} = \frac{1 - \sqrt{1 - \alpha}}{1 + \sqrt{1 - \alpha}}.
\]
and

\[1 - \beta = \frac{4\sqrt{1 - \alpha}}{(1 + \sqrt{1 - \alpha})^2}. \]

It follows that, by (2.6) and (2.14),

\[g_{4n} = \left(\frac{4\beta}{(1 - \beta)^2} \right)^{-1/24} = \left(\frac{2\sqrt{\beta}}{1 - \beta} \right)^{-1/12} = \left(\frac{2(1 - \sqrt{1 - \alpha})(1 + \sqrt{1 - \alpha})^2}{(1 + \sqrt{1 - \alpha})(4\sqrt{1 - \alpha})} \right)^{-1/12} = \left(\frac{\alpha}{2\sqrt{1 - \alpha}} \right)^{-1/12}. \]

Therefore, from (2.12), (2.5) and (2.15),

\[S_1(q) = \frac{1}{\sqrt{2}}(4\alpha(1 - \alpha))^{1/24} \left(\frac{\alpha^2}{4(1 - \alpha)} \right)^{1/24} = \frac{\alpha^{1/8}}{\sqrt{2}}. \]

This completes the proof.

Corollary 2.2. Let \(q = e^{-\pi \sqrt{\tau}}, G = G_n \) and \(g = g_n \). Then

\[S_1(q) = 2^{-5/8} \left(1 - \sqrt{1 - G^{-24}} \right)^{1/8} \]

and

\[S_1(q) = 2^{-1/2} \left((1 + 2g^{24}) - \sqrt{(1 + 2g^{24})^2 - 1} \right)^{1/8}. \]

Proof. From (2.5) and (2.6), we have

\[\alpha = \frac{1}{2} \left(1 - \sqrt{1 - G^{-24}} \right) \]

and

\[\alpha = (1 + 2g^{24}) - \sqrt{(1 + 2g^{24})^2 - 1}. \]

Then, by (2.10), Corollary (2.2) follows immediately.

Theorem 2.3. Let \(q = e^{-\pi \sqrt{\tau}} \) and \(\alpha = \alpha_n \). Then

\[S_2(q) = \frac{1}{\sqrt{2}} \left(\frac{\alpha}{1 - \alpha} \right)^{1/8}. \]

Proof. By (1.9), (2.11) and (2.2), we have

\[S_2(q) = \frac{q^{1/8}}{(q; q^2)_\infty(q^2; q^4)_\infty} = \frac{1}{\sqrt{2}g_n g_{4n}}. \]

Then the theorem follows from (2.2), (2.6) and (2.15) immediately.

By (2.18) and (2.19), \(S_2(q) \) can be also expressed either in terms of \(G \) or \(g \).

The Theorems and Corollaries above provide explicit evaluations of the Ramanujan-Selberg continued fraction in terms of the Ramanujan-Weber class invariants or singular moduli. For values of \(G_n \) and \(g_n \), see the paper of Berndt, Chan and the author [5], and the author’s papers [22], [23], for values of \(\alpha_n \), see the paper of Berndt, Chan and the author [5]. Ramanujan calculated numerous class invariants

Example 1. We have (cf. [3, p. 282])

\[
\alpha_{58} = (13\sqrt{58} - 99)^2(99 - 70\sqrt{2})^2.
\]

Then by (2.10), we find that

\[S_1 \left(e^{-\pi\sqrt{58}} \right) = 2^{-1/2}(13\sqrt{58} - 99)^{1/4}(99 - 70\sqrt{2})^{1/4}. \]

Example 2. In his first notebook, Ramanujan [14, p. 310] claimed that

\[
\alpha_{10} = (\sqrt{10} - 3)^2(3 - 2\sqrt{2})^2 = \frac{3\sqrt{2} - \sqrt{5} - 2}{3\sqrt{2} + \sqrt{5} + 2}.
\]

For a proof, see [3, p. 282]. Then

\[
\frac{\alpha_{10}}{1 - \alpha_{10}} = \frac{3\sqrt{10} - 1}{2} - 3\sqrt{2},
\]

and, by (2.20),

\[S_2 \left(e^{-\pi\sqrt{10}} \right) = \frac{1}{\sqrt{2}} \left(\frac{3\sqrt{10} - 1}{2} - 3\sqrt{2} \right)^{1/8}. \]

The author extends his thanks to Bruce Berndt who read the original manuscript and contributed some helpful suggestions, and to the referee for valuable suggestions and some corrections.

References

10. E. Heine, *Untersuchungen über die Reihe* 1 + \(\frac{(1-q^n)(1-q^m)}{(1-q)^2} x \) + \(\frac{(1-q^n)(1-q^{n+1})(1-q^m)(1-q^{m+1})}{(1-q)^3(1-q^2)} x^2 \) + \ldots , J. Reine Angew. Math. 34 (1847), 285-328.
15. S. Ramanujan, *Modular equations and approximations to \(\pi \)*, Quart. J. Math. 3 (1914), 81-98.

Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804

E-mail address: liz917f@smsu.edu