Explicit evaluations of a Ramanujan-Selberg continued fraction
HTML articles powered by AMS MathViewer
- by Liang-Cheng Zhang
- Proc. Amer. Math. Soc. 130 (2002), 9-14
- DOI: https://doi.org/10.1090/S0002-9939-01-06183-4
- Published electronically: May 22, 2001
- PDF | Request permission
Abstract:
This paper gives explicit evaluations for a Ramanujan-Selberg continued fraction in terms of class invariants and singular moduli.References
- G. E. Andrews, Bruce C. Berndt, Lisa Jacobsen, and Robert L. Lamphere, The continued fractions found in the unorganized portions of Ramanujan’s notebooks, Mem. Amer. Math. Soc. 99 (1992), no. 477, vi+71. MR 1124109, DOI 10.1090/memo/0477
- Bruce C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991. MR 1117903, DOI 10.1007/978-1-4612-0965-2
- Bruce C. Berndt, Ramanujan’s notebooks. Part V, Springer-Verlag, New York, 1998. MR 1486573, DOI 10.1007/978-1-4612-1624-7
- Bruce C. Berndt, Heng Huat Chan, and Liang-Cheng Zhang, Explicit evaluations of the Rogers-Ramanujan continued fraction, J. Reine Angew. Math. 480 (1996), 141–159. MR 1420561, DOI 10.1515/crll.1996.480.141
- Bruce C. Berndt, Heng Huat Chan, and Liang-Cheng Zhang, Ramanujan’s singular moduli, Ramanujan J. 1 (1997), no. 1, 53–74. MR 1607528, DOI 10.1023/A:1009715221401
- Bruce C. Berndt, Heng Huat Chan, and Liang-Cheng Zhang, Ramanujan’s class invariants, Kronecker’s limit formula, and modular equations, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2125–2173. MR 1376539, DOI 10.1090/S0002-9947-97-01738-8
- B. J. Birch, Weber’s class invariants, Mathematika 16 (1969), 283–294. MR 262206, DOI 10.1112/S0025579300008251
- Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
- David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
- E. Heine, Untersuchungen über die Reihe $1 + \frac { (1-q^\alpha ) (1-q^\beta ) } { (1-q) (1-q^\gamma ) } x + \frac { (1-q^\alpha ) (1-q^{\alpha +1}) (1-q^\beta ) (1-q^{\beta +1})} { (1-q)(1-q^2) (1-q^\gamma ) (1-q^{\gamma +1})} x^{2} + \dots$, J. Reine Angew. Math. 34 (1847), 285-328.
- Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. With an appendix by J. Tate. MR 890960, DOI 10.1007/978-1-4612-4752-4
- K. G. Ramanathan, Ramanujan’s continued fraction, Indian J. Pure Appl. Math. 16 (1985), no. 7, 695–724. MR 801801
- K. G. Ramanathan, Some applications of Kronecker’s limit formula, J. Indian Math. Soc. (N.S.) 52 (1987), 71–89 (1988). MR 989231
- Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
- S. Ramanujan, Modular equations and approximations to $\pi$, Quart. J. Math. 3 (1914), 81-98.
- Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR 947735
- S. Ramanujan, Collected Papers, Chelsea, New York, 1962.
- A. Selberg, Über einige arithmetische Identitäten, Avh. Norske Vid.-Akad. Oslo I, Mat.-Natur. Kl., (1936), 2-23.
- G. N. Watson, Theorems stated by Ramanujan (VII): theorems on continued fractions, J. London Math. Soc. 4 (1929), 39-48.
- H. Weber, Lehrbuch der Algebra, dritter Band, Chelsea, New York, 1961.
- Liang Cheng Zhang, $q$-difference equations and Ramanujan-Selberg continued fractions, Acta Arith. 57 (1991), no. 4, 307–355. MR 1109991, DOI 10.4064/aa-57-4-307-355
- Liang-Cheng Zhang, Ramanujan’s class invariants, Kronecker’s limit formula and modular equations. II, Analytic number theory, Vol. 2 (Allerton Park, IL, 1995) Progr. Math., vol. 139, Birkhäuser Boston, Boston, MA, 1996, pp. 817–838. MR 1409396
- Liang-Cheng Zhang, Ramanujan’s class invariants, Kronecker’s limit formula and modular equations. III, Acta Arith. 82 (1997), no. 4, 379–392. MR 1483690, DOI 10.4064/aa-82-4-379-392
Bibliographic Information
- Liang-Cheng Zhang
- Affiliation: Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
- Email: liz917f@smsu.edu
- Received by editor(s): May 16, 2000
- Published electronically: May 22, 2001
- Additional Notes: Supported in part by an SMSU Faculty Summer Fellowship, 1999
- Communicated by: David E. Rohrlich
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 9-14
- MSC (1991): Primary 11A55, 11Y65, 30B70
- DOI: https://doi.org/10.1090/S0002-9939-01-06183-4
- MathSciNet review: 1855613
Dedicated: To the memory of my father, Professor Guang-Da Zhang