Fillable contact structures on torus bundles over circles
HTML articles powered by AMS MathViewer
- by Piotr Mikrut
- Proc. Amer. Math. Soc. 130 (2002), 599-607
- DOI: https://doi.org/10.1090/S0002-9939-01-06119-6
- Published electronically: July 25, 2001
- PDF | Request permission
Abstract:
We will construct an example of a strongly symplectically fillable contact structure on a torus bundle over the circle with parabolic monodromy.References
- B. Aebischer, M. Borer, M. Kälin, Ch. Leuenberger, and H. M. Reimann, Symplectic geometry, Progress in Mathematics, vol. 124, Birkhäuser Verlag, Basel, 1994. An introduction based on the seminar in Bern, 1992. MR 1296462, DOI 10.1007/978-3-0348-7512-7
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Ugo Bruzzo and Guido Sanguinetti, Mirror symmetry on $K$3 surfaces as a hyper-Kähler rotation, Lett. Math. Phys. 45 (1998), no. 4, 295–301. MR 1653424, DOI 10.1023/A:1007446916202
- John B. Etnyre, Symplectic convexity in low-dimensional topology, Topology Appl. 88 (1998), no. 1-2, 3–25. Symplectic, contact and low-dimensional topology (Athens, GA, 1996). MR 1634561, DOI 10.1016/S0166-8641(97)00196-X
- Yasha Eliashberg, Unique holomorphically fillable contact structure on the $3$-torus, Internat. Math. Res. Notices 2 (1996), 77–82. MR 1383953, DOI 10.1155/S1073792896000074
- Emmanuel Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 6, 697–705 (French, with English summary). MR 1307678
- Yutaka Kanda, The classification of tight contact structures on the $3$-torus, Comm. Anal. Geom. 5 (1997), no. 3, 413–438. MR 1487723, DOI 10.4310/CAG.1997.v5.n3.a2
- J. Martinet, Formes de contact sur les variétés de dimension $3$, Proceedings of Liverpool Singularities Symposium, II (1969/1970), Lecture Notes in Math., Vol. 209, Springer, Berlin, 1971, pp. 142–163 (French). MR 0350771
- P.Mikrut, Invariant contact structure on 3-manifolds with local actions of tori, preprint.
- Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. I. Arnold-Liouville with singularities, Compositio Math. 101 (1996), no. 2, 179–215. MR 1389366
- Tadao Oda, Torus embeddings and applications, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57, Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York, 1978. Based on joint work with Katsuya Miyake. MR 546291
Bibliographic Information
- Piotr Mikrut
- Affiliation: Mathematical Institute, University of Wrocław, pl.Grunwaldzki 2/4, 50-384 Wrocław, Poland
- Email: mikrut@math.uni.wroc.pl
- Received by editor(s): April 21, 2000
- Received by editor(s) in revised form: July 31, 2000
- Published electronically: July 25, 2001
- Additional Notes: The author was partially supported by the Polish Committee of Scientific Research grant 2 P03A 023 14
- Communicated by: Wolfgang Ziller
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 599-607
- MSC (1991): Primary 57M60, 53C15
- DOI: https://doi.org/10.1090/S0002-9939-01-06119-6
- MathSciNet review: 1862144