Every diassociative A-loop is Moufang
HTML articles powered by AMS MathViewer
- by Michael K. Kinyon, Kenneth Kunen and J. D. Phillips
- Proc. Amer. Math. Soc. 130 (2002), 619-624
- DOI: https://doi.org/10.1090/S0002-9939-01-06090-7
- Published electronically: June 19, 2001
- PDF | Request permission
Abstract:
An A-loop is a loop in which every inner mapping is an automorphism. A problem which had been open since 1956 is settled by showing that every diassociative A-loop is Moufang.References
- Richard Hubert Bruck, A survey of binary systems, Reihe: Gruppentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0093552
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- O. Chein, H. O. Pflugfelder, and J. D. H. Smith (eds.), Quasigroups and loops: theory and applications, Sigma Series in Pure Mathematics, vol. 8, Heldermann Verlag, Berlin, 1990. MR 1125806
- A. Drapal, A-loops close to code loops are groups, Comm. Math. Univ. Carolin. 41 (2000), no. 2, 245-249.
- T.S.R. Fuad, J.D. Phillips, and X.R. Shen, On diassociative A-loops, submitted.
- Joan Hart and Kenneth Kunen, Single axioms for odd exponent groups, J. Automat. Reason. 14 (1995), no. 3, 383–412. MR 1340327, DOI 10.1007/BF00881714
- Kenneth Kunen, Moufang quasigroups, J. Algebra 183 (1996), no. 1, 231–234. MR 1397396, DOI 10.1006/jabr.1996.0216
- Kenneth Kunen, Quasigroups, loops, and associative laws, J. Algebra 185 (1996), no. 1, 194–204. MR 1409983, DOI 10.1006/jabr.1996.0321
- Kenneth Kunen, Alternative loop rings, Comm. Algebra 26 (1998), no. 2, 557–564. MR 1604107, DOI 10.1080/00927879808826147
- Kenneth Kunen, $G$-loops and permutation groups, J. Algebra 220 (1999), no. 2, 694–708. MR 1717366, DOI 10.1006/jabr.1999.8006
- Kenneth Kunen, The structure of conjugacy closed loops, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2889–2911. MR 1615991, DOI 10.1090/S0002-9947-00-02350-3
- W.W. McCune, OTTER 3.0 Reference Manual and Guide, Technical Report ANL-94/6, Argonne National Laboratory, 1994; or see: http://www-fp.mcs.anl.gov/division/software/
- W. McCune and R. Padmanabhan, Automated deduction in equational logic and cubic curves, Lecture Notes in Computer Science, vol. 1095, Springer-Verlag, Berlin, 1996. Lecture Notes in Artificial Intelligence. MR 1439047, DOI 10.1007/3-540-61398-6
- R. Moufang, Zur Struktur von Alternativkörpern, Math. Ann. 110 (1934) 416-430.
- Hala Orlik-Pflugfelder, A special class of Moufang loops, Proc. Amer. Math. Soc. 26 (1970), 583–586. MR 265498, DOI 10.1090/S0002-9939-1970-0265498-1
- J. Marshall Osborn, A theorem on $A$-loops, Proc. Amer. Math. Soc. 9 (1958), 347–349. MR 93555, DOI 10.1090/S0002-9939-1958-0093555-6
- O. Chein, H. O. Pflugfelder, and J. D. H. Smith (eds.), Quasigroups and loops: theory and applications, Sigma Series in Pure Mathematics, vol. 8, Heldermann Verlag, Berlin, 1990. MR 1125806
- J.D. Phillips, On Moufang A-loops, Comm. Math. Univ. Carolin. 41 (2000), no. 2, 371-375.
- L. Wos and G. W. Pieper, A Fascinating Country in the World of Computing — Your Guide to Automated Reasoning, World Scientific, 1999.
Bibliographic Information
- Michael K. Kinyon
- Affiliation: Department of Mathematics & Computer Science, Indiana University, South Bend, Indiana 46634
- Address at time of publication: Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5248
- MR Author ID: 267243
- ORCID: 0000-0002-5227-8632
- Email: mkinyon@iusb.edu
- Kenneth Kunen
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 57306
- MR Author ID: 107920
- Email: kunen@math.wisc.edu
- J. D. Phillips
- Affiliation: Department of Mathematics, Saint Mary’s College of California, Moraga, California 94575
- Address at time of publication: Department of Mathematics and Computer Science, Wabash College, Crawfordsville, Indiana 47933
- MR Author ID: 322053
- Email: phillips@stmarys-ca.edu
- Received by editor(s): August 3, 2000
- Received by editor(s) in revised form: August 18, 2000
- Published electronically: June 19, 2001
- Additional Notes: The second author was partially supported by NSF Grant DMS-9704520.
- Communicated by: Lance W. Small
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 619-624
- MSC (2000): Primary 20N05; Secondary 68T15
- DOI: https://doi.org/10.1090/S0002-9939-01-06090-7
- MathSciNet review: 1866009