PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 130, Number 3, Pages 653-659

S 0002-9939(01)06099-3

Article electronically published on August 29, 2001

SUBGROUP GROWTH IN SOME PRO-p GROUPS

YIFTACH BARNEA AND ROBERT GURALNICK
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ABSTRACT. For a group G let an(G) be the number of subgroups of index n
and let b, (G) be the number of normal subgroups of index n. We show that
ayk (SL3(Fp[[t])) < p*E+9)/2 for p > 2. 1f A = Fp[[t] and p does not divide
dorif A =7Zp and p # 2 or d # 2, we show that for all k sufficiently large
bk (SLL(N) = bpk+d,2—1(SL(11(A))~ On the other hand if A = Fp[[t]] and p

divides d, then b, (SLL(A)) is not even bounded as a function of n.

1. INTRODUCTION

For a group G, let a,(G) be the number of subgroups of index n. Lubotzky
and Mann |[LM] proved that a pro-p group G is p-adic analytic if and only if it has
polynomial subgroup growth; that is, there exists a constant ¢ such that a,(G) < n°
(for background on p-adic analytic pro-p groups the reader is referred to [DDMS]).
In [Sh} Corollary 2.5] Shalev proved the following:

Theorem 1.1. Let G be a pro-p group which satisfies
a4n(G) < nclo%s "
for some constant ¢ < é. Then G is p-adic analytic.
Following this result Mann [Ma] asked the following:

Question. What is the supremum of the numbers ¢, such that if G is a pro-p group
and a,(G) < n°'°" for all large n, then G is p-adic analytic?

To continue our discussion we need the following definition.

Definition 1.1. Let A be a local ring with a maximal ideal M. We define the
n-congruence subgroup of SL4(A) to be

SLP(A) = ker(SLa(A) — SLa(A/M™).

The particular examples of local rings we deal with are A = Z,, the p-adic
integers, and M = pZ, or A = F,[[t]], formal power series over a field of p-elements,
and M = tF,[[t]]. It is well known that for these examples A, SL}(A) is a pro-p
group. Moreover, SL}(F,[[t]]) is not p-adic analytic. In [Sh] it is already shown that

ap (SL(F,[[t]]) < Ap? for p > 2 and some constant A. We show the following:

Received by the editors March 1, 2000 and, in revised form, September 18, 2000.

2000 Mathematics Subject Classification. Primary 20E18; Secondary 17B70.

Both authors wish to thank MSRI for its hospitality. The second author was also partially
supported by an NSF grant.

(©2001 American Mathematical Society

653



654 YIFTACH BARNEA AND ROBERT GURALNICK

Theorem 1.2. Let G = SL(F,[[t]]) with p > 2. Then a(G) < prk+9)/2,

Thus in answer to Mann’s question we show that the supremum is no more than
1 (for p > 2).

We now turn our attention to the study of the lattice of normal subgroups of
SLL(A), for A = Z, and A = F,[[t]]. Let us recall that a group G is called just
infinite if its only nontrivial normal subgroups are of finite index. It is well known
that if p # 2 or d # 2, then SLY(A) is just infinite (this is actually shown in
the proof of Lemma ET). In [Yd, Proposition 3.5.1] it is shown that the lattice of
normal subgroups of another just infinite pro-p group, J,, the Nottingham group
is “periodic” (p > 3). In particular for any k, b,r(Jp) = bpr+1(Jp). We show the
following:

Theorem 1.3. Suppose A = F,[[t]] and p does not divide d or A = Z,, and p # 2 or
d # 2. There is a constant K = K (p,d) such that b (SLy(A)) = byjeraz 1 (SLL(A))
forallk > K.

Theorem [[3]and the result for the Nottingham group might suggest that for any
just infinite pro-p group a similar phenomenon occurs. The following theorem is
thus somewhat surprising, as it shows that there is a big difference in the behavior
of b, (SLY(F,[[t]])) in the case p divides d.

Theorem 1.4. If p divides d, then b, (SLL(F,[[t])) is not bounded as a function
of n.

Our main tool in this paper is Lie methods. It would be interesting to find a
proof of Theorem [[3] in the case A = Z, based on powerful groups. This might
help to handle the case where p = d = 2.

2. LIE METHODS

Suppose A = Z, or A = F,[[t]]. Let G,, = SLY(A). It is straightforward to see
that (G, Gm) C Grim and GE C Gpy1. Thus G, /G4 is an elementary abelian
p-group. It is easy to verify that |G, /Gpt1| = de*1 and indeed this quotient is
the adjoint module for SLq(F)).

The reader is referred to [LSh] for more details on the following construction.
Define

L(Gl) = Z Gn/Gn—'rl-
If x € G,, and y € G,,,, we define the bracket product

[2Grt1,YGm1] = (2, Y)Grnim+1.
Extending this product by linearity gives L(G1) the structure of a Lie algebra over
F,. It is not hard to check that L(Gy) = tsly(F,)[t] — the set of polynomials with

0 constant coefficient over sly(F,).
Let H be a closed subgroup of G;. We define

L(H) = (HNGp)Gni1/Gny1.
The following facts are easy to verify:
1. L(H) is graded subalgebra of L(Gy).
2. If K < H are closed subgroups, then L(K) C L(H) and dim(L(H)/L(K)) =
log,[H : K].
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3. If H is normal, then L(H) is an ideal.

4. Gy, < H if and only if t"sly(F,)[t] C L(H).

5. If L(H) is generated by d homogeneous elements, then d(H) < d, where d(H)
is the minimal number of elements required to generate H topologically.

Let us remark that one can associate to the group Gi/G, the Lie algebra
tslg(F,)[t]/(¢™). Similar results to the above holds for subgroups and subalgebras.

3. THE SUBGROUP GROWTH OF SL3(F,[[t]])

We first consider a question about generation of Lie subalgebras of L =
tsly(F,)[t]/(¢" ). There should be an analogous result for other simple Lie al-
gebras. Note that there exist Lie subalgebras of L which require the maximum
number of generators given in the result.

Proposition 3.1. Let L = tsly(F,)[t]/(t" 1) with p > 2. If H is a graded subalge-
bra of L of dimension d and codimension ¢, then H can be generated by min{c+3, d}
elements. In particular, H can be generated by no more than %(n—i— 1) homogeneous
elements.

Proof. First note that the second statement follows from the first since H can be
generated by (1/2)(c+d+ 3) = (3/2)(n + 1) homogeneous elements.

Let H = Hit®- - -®Hut", where H; C sly(F,), and let h; = dim H;. Similarly, let
H/ denote the degree ¢ component of the derived algebra [H, H] and set b, = dim H].

We recall that if M is a nilpotent Lie algebra and S is a subalgebra, then S = M
if and only if S+ [M, M] = M [Jal Exercise 1.10]. In particular, this implies that
if M is a finite dimensional graded nilpotent Lie algebra, then M can be generated
by dim(M/[M, M]) homogeneous elements (of course, this is also the minimum
number of generators required).

We also recall that sly(F,) (p > 2) is a simple Lie algebra and therefore a perfect
Lie algebra, namely equals its derived subalgebra. Let V, U be subspaces of sl (F,).
As dimsly(F,) = 3, it is easy to verify the following facts:

1. If dim V = 2, then [V, sly(F))] = sla(F)).

2. If dimV =1, then dim[V, sly(F,)] = 2.

3. If dim V' = 2, then dim[V, V] = 1.

4. ItV #U and dimV = dim U = 2, then [V, U] = slz(F,)

5. If dimV =2 and dimU =1, then 1 < dim[V, U] < 2.

Of course, H can always be generated by d homogeneous elements.

We use an induction on n. For n = 1,2, the result is clear. If h!, = 0, then for
all 1 < i < n, [H;, H,—;] C H}; therefore h; + hy,—; < 3. Thus, ¢ > (3/2)(n — 1)
and d < ¢+ 3. Note in fact this argument is valid under the weaker assumption
that h; + h,—; <3 foralll <i<n.

So we assume that h; + h,_; > 4 for some i. Let j be the smallest positive
integer such that hj 4+ hp,—; > 4.

If h; + hyp—; > 5 for some i, then h), = 3. If ], = 3, then by induction H/H,t"
can be generated by at most ¢ + 3 homogeneous elements. Since H,t" C [H, H],
this implies the same for H.

So we may assume that h; + h,,—; < 4 for all i and that h], < 2.

Let A denote the set of integers with h; + h,—; = 4. Set e = |A|. We notice that
d<3+4(3/2)(n—1)+e/2and ¢ > (3/2)(n—1) —e/2. Thus d —e < ¢+ 3. Since j
is minimal in A, n — j is maximal in A and so i 4+ j < n for all i € A.
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First suppose that h; > 2. Then [H;t/, H;t'] # 0 for any i € A and since these
spaces are independent, it follows that dim[H, H] > e. Thus, dim H/[H, H] <
d — e < c+ 3 as required.

Finally, consider the case that h; = 1 (and so h,—; = 3 and h), = 2). Let
i € A. So either h; = h,_; = 2 and [Hjtj,Hmtm] # 0 form = i,n —1 or
exactly one of h;, hy,—; is 3. Thus, [H;t/, Dica H;t'] has dimension at least e. So
[H, H] has dimension at least e and as in the previous paragraph, we deduce that
dim H/[H,H] < ¢+ 3. O

Proof of Theorem [[L2 Let G; = SL5(F,[[t]]). The G; are a base for the neighbor-
hoods of the identity. As G is finitely generated for any given k, there is m big
enough such that G, is contained in all subgroups of index p* (actually Shalev [Sh}
Theorem 4.1] proved that m = k + 1 is sufficient). Therefore a,r(G) = apx (G/Gr).
For any group H let g,(H) be the supremum on the number of generators of sub-
groups of index n. From [LSH, Lemma 4.1] we see that

a4 (G) = ape (G/G ) < p?t (G GmItop(G/Gm) bt gk (G Gm)

By fact 5 in Section 2, the remark following it and Proposition [3:1] we deduce
that

a,:(Gy) < p0+1+2+~~~+(k—1)+3k _ pk(k+5)/2.

4. THE NORMAL SUBGROUP GROWTH OF SL(A)
Suppose A = Z,, or A = F,[[t]. Let G = SLL(A) and G,, = SL%(A).

Lemma 4.1. Suppose A =T,[[t]] and p does not divide d or A = Z, and p # 2 or
d # 2. Then there is a constant f = f(p,d) such that, for any normal subgroup N
of G, there exists an n such that Gy < N < G,.

Proof. Let A = TF,|[[t]] or A =Z,. Let n be maximal such that N < G,,. Therefore
we can find z € N such that ¢ G,,41. Passing to L(N) = >, L;t*, we can find a
homogeneous element 7" € L(N), where 0 # & € sl4(F,). Define Uy = [z, 54(F,)]
and by induction Uy, 41 = [Up, 5lq(Fp)]. Define U = |J U,,. This is a nontrivial ideal
of sl4(F,). If p does not divide d, then sl4(F),) is a simple Lie algebra. Therefore
U = slq(Fp). As sly(IFp) is perfect, we see that Uy, C Uy,41 for all m and moreover,
equality holds if and only if U, = sl4(F,). As dim(sly(F,)) = d? — 1, we deduce
that Ug_; = 5[d(Fp).

Since N is normal, L(N) is an ideal and thus [L(N), slq(F,)t] € L(N). Therefore
Un € Lnymand slg(Fp) = Lyq4245-1 for j = 0,1,.... We now use fact 4 from
section two to deduce that G, 1421 < N.

Suppose now that A = Z, and p divides d > 2. Let s be the largest positive
integer such that p® divides d. Since p # 2 or d # 2, sl4(F,) is perfect Lie algebra
and its only non-trivial ideal is the center. Hence if U is not central, we can argue
as above. Suppose that Z is a scalar. Let © = I + A, where A € p"My(Zy).
As T is a scalar we can write A = p"AI + B, where A is an invertible element of
Zp, B € p"My(Zy), r > n, and B mod p"*! is not a scalar. Hence we can write
x=(14+p"N)I(I+ C) where C € p"M4(Z,). We note that

det((1+p"N)I) =1+ 3 (d)pA

i>1
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Let ¢ be maximal such that, for all i > 1, (‘Z)p"i mod p! = 0. We notice that
when n > s, t = n+ s. Hence t — n is bounded by a function of p and d. As
1 = det(x) = det((1 + p"A\)I)det(I 4+ C) and det((1 + p"A)I) mod p'*t! # 0, one
can deduce that C mod p'*! # 0; moreover as p divides d, C mod p**! is not a
scalar.

It is not hard to find an element y € G which has the form y = I 4+ D, where
D € pM4(Z,) and [D, C] mod p**? is not a scalar. Set z = (z,y) € Gy11. We leave
to the reader to verify that z = I + E, where E € p"*'M4(Z,), and E mod p'*2 =
[D, C]. From here the proof goes as in the case where p divides d, where we replace
x by z, and noticing that ¢ + d2 — n is bounded in terms of p and d. O

Remarks. 1. The case where p does not divide d already appeared in an unpublished
preprint by Aner Shalev.

2. In the course of the proof we actually showed that if A = F,[[t]] and p does
not divide d or A =7Z, and p # 2 or d # 2, then G is just infinite.

3. A similar argument to the case where A = Z, and p divides d can be used to
show that G is just infinite even when A = F,[[¢]] as long as p # 2 or d # 2.

We note that conjugation in G induces a structure of G-set on G, /G4 421 for
all n.

Lemma 4.2. Suppose A = F,[[t]] and p does not divide d or A =Z, and p # 2 or
d # 2. Let f be as in the previous lemma. Then there is one to one correspondence
between the set of normal subgroups of G and the pairs (n, H) such that H is a
subgroup of Gy, /G5 which is not contained in Gy—1/Gnyy and H is G-invariant.

Proof. Let N be a normal subgroup of G. By Lemma 1] we can find n such that
Gn+y < N < G,. We choose n to be maximal. Let H = N/G,1y. Since n is
maximal, H is not contained in Gy,—1/Gp4y. As N is normal, H is G-invariant.
On the other hand, given a pair (n, H), we take N to be the pre-image of H under
the quotient map from G, onto G, /Gryys. It is easy to verify that these maps are
the inverses of each other. [l

Lemma 4.3. Let f be some constant. Then for n > f there is a map

¢ Gn/Gnss — Gni1/Gnyp

such that ¢ is an equivariant group isomorphism and

P(Gny1/Gnyy) = Gny2 /Gy i

Proof. First let us deal with the case A = F,[[t]]. Notice that every element of G,,
has the form I + A, where A € t"My(F,[[t]]). We leave to the reader to check that
if n > f, then the fact that the determinants of elements in G are one implies that
Trace(A) mod t"*/ = 0. On the other hand if Trace(A) mod ¢"*/ = 0, then one
can construct (using induction) an element in Gy, of the above form.

We define a map

2 Gn/Gn+f - Gn+1/Gn+f+1-
By
o((I + A)Gryg) = (I +1A)Grypa
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(this is a slight abuse of notation as I + tA does not necessarily have determinant
1). It is easy to check that ¢ satisfies the required conditions.
For A = Z,, the argument is very similar when we replace ¢ by p. O

Proof Theorem [[.3 Let f be as in Lemma 1. For n > f we define ¢(s) to be
the number of G-invariant subgroups of G,/Gn4+s which are not contained in
Gn+1/Gryy and have index p°. By Lemma [£3] this is well defined and in par-
ticular does not depend on n.

Let us define by ,(G) to be the number of normal subgroups of index p* of G
which contain G4y and are contained in G, and n is maximal under this property.
If H is a normal subgroup of index p*, then by Lemma EI] there is n such that
Gnyy < H < Gy. We deduce that p(”+f_1)(d2_1) > pF > p("_l)(dz_l); thus
%+1—f<n§ dgk_l—i—l. We note that if k > (2f — 1)(d? — 1), then n > f.

By Lemma 2] and the above argument we see that for n > f the following is
true:

o

ifn< A +1-F,
if 75 +1<n,
c(k—(n—1)(d*>—1)) otherwise.

By Lemma B2 for k > (2f — 1)(d? — 1)
bye(G) =Y bpn(G) = > c(k — (n—1)(d® —1)).

bin(G) =

o

nz1 ol f<n< 41
Thus b,«(G) depends only on k mod d* — 1 for k > (2f — 1)(d* — 1). O

Proof of Theorem We note that G, /Ga, is an elementary abelian p-group;
moreover G, /Gay, is a G-module. Let z € G,, and let us write x = I + A, where
A € t"My(F,[[t]). We note that det(x) = 1 implies that Trace(A) mod " = 0.
On the other hand suppose Trace(A) mod t>" = 0; then one can construct (using
induction) an element in G,, of the above form. As p divides d if A mod t*" is
a scalar, then Trace(A) mod t*" = 0. We also note that if A mod t?" is a scalar,
then G acts trivially on (zGa,). Let N, be the pre-image of (xGa,) in G,,. This
is a normal subgroup of G of index p(Q”_l)(dz_l)_l. Of course the number of such
subgroups is equal to the number of A € t"My(F,[[t]]) such that A mod t*" are
nonzero scalars divided by p—1. Therefore b 2, —1ya2-1)-1(G) = (p"—1)/(p—1). O
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