PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 130, Number 3, Pages 653-659 S 0002-9939(01)06099-3 Article electronically published on August 29, 2001

SUBGROUP GROWTH IN SOME PRO-p GROUPS

YIFTACH BARNEA AND ROBERT GURALNICK

(Communicated by Lance W. Small)

ABSTRACT. For a group G let $a_n(G)$ be the number of subgroups of index n and let $b_n(G)$ be the number of normal subgroups of index n. We show that $a_{pk}(SL_2^1(\mathbb{F}_p[[t]])) \leq p^{k(k+5)/2}$ for p > 2. If $\Lambda = \mathbb{F}_p[[t]]$ and p does not divide d or if $\Lambda = \mathbb{Z}_p$ and $p \neq 2$ or $d \neq 2$, we show that for all k sufficiently large $b_{pk}(SL_d^1(\Lambda)) = b_{pk+d^2-1}(SL_d^1(\Lambda))$. On the other hand if $\Lambda = \mathbb{F}_p[[t]]$ and p divides d, then $b_n(SL_d^1(\Lambda))$ is not even bounded as a function of n.

1. INTRODUCTION

For a group G, let $a_n(G)$ be the number of subgroups of index n. Lubotzky and Mann [LM] proved that a pro-p group G is p-adic analytic if and only if it has polynomial subgroup growth; that is, there exists a constant c such that $a_n(G) \leq n^c$ (for background on p-adic analytic pro-p groups the reader is referred to [DDMS]). In [Sh, Corollary 2.5] Shalev proved the following:

Theorem 1.1. Let G be a pro-p group which satisfies

 $a_n(G) \le n^{c \log_p n}$

for some constant $c < \frac{1}{8}$. Then G is p-adic analytic.

Following this result Mann [Ma] asked the following:

Question. What is the supremum of the numbers c, such that if G is a pro-p group and $a_n(G) < n^{c \log_p n}$ for all large n, then G is p-adic analytic?

To continue our discussion we need the following definition.

Definition 1.1. Let Λ be a local ring with a maximal ideal M. We define the *n*-congruence subgroup of $SL_d(\Lambda)$ to be

$$SL_d^n(\Lambda) = \ker(SL_d(\Lambda) \to SL_d(\Lambda/M^n)).$$

The particular examples of local rings we deal with are $\Lambda = \mathbb{Z}_p$, the *p*-adic integers, and $M = p\mathbb{Z}_p$ or $\Lambda = \mathbb{F}_p[[t]]$, formal power series over a field of *p*-elements, and $M = t\mathbb{F}_p[[t]]$. It is well known that for these examples Λ , $SL_d^1(\Lambda)$ is a pro-*p* group. Moreover, $SL_d^1(\mathbb{F}_p[[t]])$ is not *p*-adic analytic. In [Sh] it is already shown that $a_{p^k}(SL_2^1(\mathbb{F}_p[[t]])) \leq Ap^{2k^2}$ for p > 2 and some constant *A*. We show the following:

©2001 American Mathematical Society

Received by the editors March 1, 2000 and, in revised form, September 18, 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20E18; Secondary 17B70.

Both authors wish to thank MSRI for its hospitality. The second author was also partially supported by an NSF grant.

Theorem 1.2. Let $G = SL_2^1(\mathbb{F}_p[[t]])$ with p > 2. Then $a_{p^k}(G) \le p^{k(k+5)/2}$.

Thus in answer to Mann's question we show that the supremum is no more than $\frac{1}{2}$ (for p > 2).

We now turn our attention to the study of the lattice of normal subgroups of $SL_d^1(\Lambda)$, for $\Lambda = \mathbb{Z}_p$ and $\Lambda = \mathbb{F}_p[[t]]$. Let us recall that a group G is called **just infinite** if its only nontrivial normal subgroups are of finite index. It is well known that if $p \neq 2$ or $d \neq 2$, then $SL_d^1(\Lambda)$ is just infinite (this is actually shown in the proof of Lemma 4.1). In [Yo, Proposition 3.5.1] it is shown that the lattice of normal subgroups of another just infinite pro-p group, J_p , the Nottingham group is "periodic" (p > 3). In particular for any k, $b_{p^k}(J_p) = b_{p^{k+1}}(J_p)$. We show the following:

Theorem 1.3. Suppose $\Lambda = \mathbb{F}_p[[t]]$ and p does not divide d or $\Lambda = \mathbb{Z}_p$ and $p \neq 2$ or $d \neq 2$. There is a constant K = K(p, d) such that $b_{p^k}(SL^1_d(\Lambda)) = b_{p^{k+d^2-1}}(SL^1_d(\Lambda))$ for all k > K.

Theorem 1.3 and the result for the Nottingham group might suggest that for any just infinite pro-p group a similar phenomenon occurs. The following theorem is thus somewhat surprising, as it shows that there is a big difference in the behavior of $b_n(SL^1_d(\mathbb{F}_p[[t]]))$ in the case p divides d.

Theorem 1.4. If p divides d, then $b_n(SL^1_d(\mathbb{F}_p[[t]]))$ is not bounded as a function of n.

Our main tool in this paper is Lie methods. It would be interesting to find a proof of Theorem 1.3 in the case $\Lambda = \mathbb{Z}_p$ based on powerful groups. This might help to handle the case where p = d = 2.

2. Lie methods

Suppose $\Lambda = \mathbb{Z}_p$ or $\Lambda = \mathbb{F}_p[[t]]$. Let $G_n = SL_d^n(\Lambda)$. It is straightforward to see that $(G_n, G_m) \subseteq G_{n+m}$ and $G_n^p \subseteq G_{n+1}$. Thus G_n/G_{n+1} is an elementary abelian p-group. It is easy to verify that $|G_n/G_{n+1}| = p^{d^2-1}$ and indeed this quotient is the adjoint module for $SL_d(\mathbb{F}_p)$.

The reader is referred to [LSh] for more details on the following construction. Define

$$L(G_1) = \sum G_n / G_{n+1}.$$

If $x \in G_n$ and $y \in G_m$, we define the bracket product

$$[xG_{n+1}, yG_{m+1}] = (x, y)G_{n+m+1}.$$

Extending this product by linearity gives $L(G_1)$ the structure of a Lie algebra over \mathbb{F}_p . It is not hard to check that $L(G_1) \cong t\mathfrak{sl}_d(\mathbb{F}_p)[t]$ — the set of polynomials with 0 constant coefficient over $\mathfrak{sl}_d(\mathbb{F}_p)$.

Let H be a closed subgroup of G_1 . We define

$$L(H) = \sum (H \cap G_n) G_{n+1} / G_{n+1}.$$

The following facts are easy to verify:

- 1. L(H) is graded subalgebra of $L(G_1)$.
- 2. If $K \leq H$ are closed subgroups, then $L(K) \subseteq L(H)$ and $\dim(L(H)/L(K)) = \log_p[H:K]$.

- 3. If H is normal, then L(H) is an ideal.
- 4. $G_n \leq H$ if and only if $t^n \mathfrak{sl}_d(\mathbb{F}_p)[t] \subseteq L(H)$.
- 5. If L(H) is generated by d homogeneous elements, then $d(H) \leq d$, where d(H) is the minimal number of elements required to generate H topologically.

Let us remark that one can associate to the group G_1/G_n the Lie algebra $t\mathfrak{sl}_d(\mathbb{F}_p)[t]/(t^n)$. Similar results to the above holds for subgroups and subalgebras.

3. The subgroup growth of $SL_2^1(\mathbb{F}_p[[t]])$

We first consider a question about generation of Lie subalgebras of $L = t\mathfrak{sl}_2(\mathbb{F}_p)[t]/(t^{n+1})$. There should be an analogous result for other simple Lie algebras. Note that there exist Lie subalgebras of L which require the maximum number of generators given in the result.

Proposition 3.1. Let $L = t\mathfrak{sl}_2(\mathbb{F}_p)[t]/(t^{n+1})$ with p > 2. If H is a graded subalgebra of L of dimension d and codimension c, then H can be generated by $\min\{c+3, d\}$ elements. In particular, H can be generated by no more than $\frac{3}{2}(n+1)$ homogeneous elements.

Proof. First note that the second statement follows from the first since H can be generated by (1/2)(c+d+3) = (3/2)(n+1) homogeneous elements.

Let $H = H_1 t \oplus \cdots \oplus H_n t^n$, where $H_i \subseteq \mathfrak{sl}_2(\mathbb{F}_p)$, and let $h_i = \dim H_i$. Similarly, let H'_i denote the degree *i* component of the derived algebra [H, H] and set $h'_i = \dim H'_i$.

We recall that if M is a nilpotent Lie algebra and S is a subalgebra, then S = M if and only if S + [M, M] = M [Ja, Exercise I.10]. In particular, this implies that if M is a finite dimensional graded nilpotent Lie algebra, then M can be generated by $\dim(M/[M, M])$ homogeneous elements (of course, this is also the minimum number of generators required).

We also recall that $\mathfrak{sl}_2(\mathbb{F}_p)$ (p > 2) is a simple Lie algebra and therefore a perfect Lie algebra, namely equals its derived subalgebra. Let V, U be subspaces of $\mathfrak{sl}_2(\mathbb{F}_p)$. As dim $\mathfrak{sl}_2(\mathbb{F}_p) = 3$, it is easy to verify the following facts:

1. If dim V = 2, then $[V, \mathfrak{sl}_2(\mathbb{F}_p)] = \mathfrak{sl}_2(\mathbb{F}_p)$.

2. If dim V = 1, then dim $[V, \mathfrak{sl}_2(\mathbb{F}_p)] = 2$.

3. If dim V = 2, then dim [V, V] = 1.

4. If $V \neq U$ and dim $V = \dim U = 2$, then $[V, U] = \mathfrak{sl}_2(\mathbb{F}_p)$

5. If dim V = 2 and dim U = 1, then $1 \leq \dim[V, U] \leq 2$.

Of course, H can always be generated by d homogeneous elements.

We use an induction on n. For n = 1, 2, the result is clear. If $h'_n = 0$, then for all $1 \le i < n$, $[H_i, H_{n-i}] \subseteq H'_n$; therefore $h_i + h_{n-i} \le 3$. Thus, $c \ge (3/2)(n-1)$ and $d \le c+3$. Note in fact this argument is valid under the weaker assumption that $h_i + h_{n-i} \le 3$ for all $1 \le i < n$.

So we assume that $h_i + h_{n-i} \ge 4$ for some *i*. Let *j* be the smallest positive integer such that $h_j + h_{n-j} \ge 4$.

If $h_i + h_{n-i} \ge 5$ for some *i*, then $h'_n = 3$. If $h'_n = 3$, then by induction $H/H_n t^n$ can be generated by at most c + 3 homogeneous elements. Since $H_n t^n \subseteq [H, H]$, this implies the same for H.

So we may assume that $h_i + h_{n-i} \leq 4$ for all *i* and that $h'_n \leq 2$.

Let Δ denote the set of integers with $h_i + h_{n-i} = 4$. Set $e = |\Delta|$. We notice that $d \leq 3 + (3/2)(n-1) + e/2$ and $c \geq (3/2)(n-1) - e/2$. Thus $d - e \leq c + 3$. Since j is minimal in Δ , n - j is maximal in Δ and so $i + j \leq n$ for all $i \in \Delta$.

First suppose that $h_j \ge 2$. Then $[H_j t^j, H_i t^i] \ne 0$ for any $i \in \Delta$ and since these spaces are independent, it follows that $\dim[H, H] \ge e$. Thus, $\dim H/[H, H] \le d - e \le c + 3$ as required.

Finally, consider the case that $h_j = 1$ (and so $h_{n-j} = 3$ and $h'_n = 2$). Let $i \in \Delta$. So either $h_i = h_{n-i} = 2$ and $[H_j t^j, H_m t^m] \neq 0$ for m = i, n-i or exactly one of h_i, h_{n-i} is 3. Thus, $[H_j t^j, \bigoplus_{i \in \Delta} H_i t^i]$ has dimension at least e. So [H, H] has dimension at least e and as in the previous paragraph, we deduce that $\dim H/[H, H] \leq c+3$.

Proof of Theorem 1.2. Let $G_i = SL_2^i(\mathbb{F}_p[[t]])$. The G_i are a base for the neighborhoods of the identity. As G is finitely generated for any given k, there is m big enough such that G_m is contained in all subgroups of index p^k (actually Shalev [Sh, Theorem 4.1] proved that m = k + 1 is sufficient). Therefore $a_{p^k}(G) = a_{p^k}(G/G_m)$. For any group H let $g_n(H)$ be the supremum on the number of generators of subgroups of index n. From [LSh, Lemma 4.1] we see that

$$a_{p^k}(G) = a_{p^k}(G/G_m) \le p^{g_1(G/G_m) + g_p(G/G_m) + \dots + g_{p^{k-1}}(G/G_m)}.$$

By fact 5 in Section 2, the remark following it and Proposition 3.1 we deduce that

$$a_{p^k}(G_1) \le p^{0+1+2+\dots+(k-1)+3k} = p^{k(k+5)/2}.$$

4. The normal subgroup growth of $SL^1_d(\Lambda)$

Suppose $\Lambda = \mathbb{Z}_p$ or $\Lambda = \mathbb{F}_p[[t]]$. Let $G = SL^1_d(\Lambda)$ and $G_n = SL^n_d(\Lambda)$.

Lemma 4.1. Suppose $\Lambda = \mathbb{F}_p[[t]]$ and p does not divide d or $\Lambda = \mathbb{Z}_p$ and $p \neq 2$ or $d \neq 2$. Then there is a constant f = f(p, d) such that, for any normal subgroup N of G, there exists an n such that $G_{n+f} < N \leq G_n$.

Proof. Let $\Lambda = \mathbb{F}_p[[t]]$ or $\Lambda = \mathbb{Z}_p$. Let *n* be maximal such that $N \leq G_n$. Therefore we can find $x \in N$ such that $x \notin G_{n+1}$. Passing to $L(N) = \sum_{i\geq 1} L_i t^i$, we can find a homogeneous element $\bar{x}t^n \in L(N)$, where $0 \neq \bar{x} \in \mathfrak{sl}_d(\mathbb{F}_p)$. Define $U_1 = [\bar{x}, \mathfrak{sl}_d(\mathbb{F}_p)]$ and by induction $U_{m+1} = [U_m, \mathfrak{sl}_d(\mathbb{F}_p)]$. Define $U = \bigcup U_m$. This is a nontrivial ideal of $\mathfrak{sl}_d(\mathbb{F}_p)$. If *p* does not divide *d*, then $\mathfrak{sl}_d(\mathbb{F}_p)$ is a simple Lie algebra. Therefore $U = \mathfrak{sl}_d(\mathbb{F}_p)$. As $\mathfrak{sl}_d(\mathbb{F}_p)$ is perfect, we see that $U_m \subseteq U_{m+1}$ for all *m* and moreover, equality holds if and only if $U_m = \mathfrak{sl}_d(\mathbb{F}_p)$. As $\dim(\mathfrak{sl}_d(\mathbb{F}_p)) = d^2 - 1$, we deduce that $U_{d^2-1} = \mathfrak{sl}_d(\mathbb{F}_p)$.

Since N is normal, L(N) is an ideal and thus $[L(N), \mathfrak{sl}_d(\mathbb{F}_p)t] \subseteq L(N)$. Therefore $U_m \subseteq L_{n+m}$ and $\mathfrak{sl}_d(\mathbb{F}_p) = L_{n+d^2+j-1}$ for $j = 0, 1, \ldots$ We now use fact 4 from section two to deduce that $G_{n+d^2-1} < N$.

Suppose now that $\Lambda = \mathbb{Z}_p$ and p divides d > 2. Let s be the largest positive integer such that p^s divides d. Since $p \neq 2$ or $d \neq 2$, $\mathfrak{sl}_d(\mathbb{F}_p)$ is perfect Lie algebra and its only non-trivial ideal is the center. Hence if U is not central, we can argue as above. Suppose that \bar{x} is a scalar. Let x = I + A, where $A \in p^n M_d(\mathbb{Z}_p)$. As \bar{x} is a scalar we can write $A = p^n \lambda I + B$, where λ is an invertible element of \mathbb{Z}_p , $B \in p^r M_d(\mathbb{Z}_p)$, r > n, and $B \mod p^{r+1}$ is not a scalar. Hence we can write $x = (1 + p^n \lambda)I(I + C)$ where $C \in p^r M_d(\mathbb{Z}_p)$. We note that

$$\det((1+p^n\lambda)I) = 1 + \sum_{i\geq 1} \binom{d}{i} p^{ni}\lambda^i.$$

Let t be maximal such that, for all $i \ge 1$, $\binom{d}{i}p^{ni} \mod p^t \equiv 0$. We notice that when n > s, t = n + s. Hence t - n is bounded by a function of p and d. As $1 = \det(x) = \det((1 + p^n\lambda)I) \det(I + C)$ and $\det((1 + p^n\lambda)I) \mod p^{t+1} \neq 0$, one can deduce that $C \mod p^{t+1} \neq 0$; moreover as p divides d, $C \mod p^{t+1}$ is not a scalar.

It is not hard to find an element $y \in G$ which has the form y = I + D, where $D \in pM_d(\mathbb{Z}_p)$ and $[D, C] \mod p^{t+2}$ is not a scalar. Set $z = (x, y) \in G_{t+1}$. We leave to the reader to verify that z = I + E, where $E \in p^{t+1}M_d(\mathbb{Z}_p)$, and $E \mod p^{t+2} \equiv [D, C]$. From here the proof goes as in the case where p divides d, where we replace x by z, and noticing that $t + d^2 - n$ is bounded in terms of p and d.

Remarks. 1. The case where p does not divide d already appeared in an unpublished preprint by Aner Shalev.

2. In the course of the proof we actually showed that if $\Lambda = \mathbb{F}_p[[t]]$ and p does not divide d or $\Lambda = \mathbb{Z}_p$ and $p \neq 2$ or $d \neq 2$, then G is just infinite.

3. A similar argument to the case where $\Lambda = \mathbb{Z}_p$ and p divides d can be used to show that G is just infinite even when $\Lambda = \mathbb{F}_p[[t]]$ as long as $p \neq 2$ or $d \neq 2$.

We note that conjugation in G induces a structure of G-set on G_n/G_{n+d^2-1} for all n.

Lemma 4.2. Suppose $\Lambda = \mathbb{F}_p[[t]]$ and p does not divide d or $\Lambda = \mathbb{Z}_p$ and $p \neq 2$ or $d \neq 2$. Let f be as in the previous lemma. Then there is one to one correspondence between the set of normal subgroups of G and the pairs (n, H) such that H is a subgroup of G_n/G_{n+f} which is not contained in G_{n-1}/G_{n+f} and H is G-invariant.

Proof. Let N be a normal subgroup of G. By Lemma 4.1 we can find n such that $G_{n+f} < N \leq G_n$. We choose n to be maximal. Let $H = N/G_{n+f}$. Since n is maximal, H is not contained in G_{n-1}/G_{n+f} . As N is normal, H is G-invariant. On the other hand, given a pair (n, H), we take N to be the pre-image of H under the quotient map from G_n onto G_n/G_{n+f} . It is easy to verify that these maps are the inverses of each other.

Lemma 4.3. Let f be some constant. Then for n > f there is a map

$$\varphi: G_n/G_{n+f} \to G_{n+1}/G_{n+f+1}$$

such that φ is an equivariant group isomorphism and

$$\varphi(G_{n+1}/G_{n+f}) = G_{n+2}/G_{n+f+1}.$$

Proof. First let us deal with the case $\Lambda = \mathbb{F}_p[[t]]$. Notice that every element of G_n has the form I + A, where $A \in t^n M_d(\mathbb{F}_p[[t]])$. We leave to the reader to check that if n > f, then the fact that the determinants of elements in G are one implies that Trace(A) mod $t^{n+f} \equiv 0$. On the other hand if Trace(A) mod $t^{n+f} \equiv 0$, then one can construct (using induction) an element in G_n of the above form.

We define a map

$$\varphi: G_n/G_{n+f} \to G_{n+1}/G_{n+f+1}$$

By

$$\varphi((I+A)G_{n+f}) = (I+tA)G_{n+f+1}$$

(this is a slight abuse of notation as I + tA does not necessarily have determinant 1). It is easy to check that φ satisfies the required conditions.

For $\Lambda = \mathbb{Z}_p$ the argument is very similar when we replace t by p.

Proof Theorem 1.3. Let f be as in Lemma 4.1. For n > f we define c(s) to be the number of G-invariant subgroups of G_n/G_{n+f} which are not contained in G_{n+1}/G_{n+f} and have index p^s . By Lemma 4.3 this is well defined and in particular does not depend on n.

Let us define $b_{k,n}(G)$ to be the number of normal subgroups of index p^k of G which contain G_{n+f} and are contained in G_n and n is maximal under this property. If H is a normal subgroup of index p^k , then by Lemma 4.1 there is n such that $G_{n+f} < H \leq G_n$. We deduce that $p^{(n+f-1)(d^2-1)} > p^k \geq p^{(n-1)(d^2-1)}$; thus $\frac{k}{d^2-1} + 1 - f < n \leq \frac{k}{d^2-1} + 1$. We note that if $k > (2f-1)(d^2-1)$, then n > f. By Lemma 4.2 and the above argument we see that for n > f the following is

true:

$$b_{k,n}(G) = \begin{cases} 0 & \text{if } n \le \frac{k}{d^2 - 1} + 1 - f \\ 0 & \text{if } \frac{k}{d^2 - 1} + 1 < n, \\ c(k - (n - 1)(d^2 - 1)) & \text{otherwise.} \end{cases}$$

By Lemma 4.2 for $k > (2f - 1)(d^2 - 1)$

$$b_{p^k}(G) = \sum_{n \ge 1} b_{k,n}(G) = \sum_{\frac{k}{d^2 - 1} + 1 - f < n \le \frac{k}{d^2 - 1} + 1} c(k - (n - 1)(d^2 - 1)).$$

Thus $b_{p^k}(G)$ depends only on $k \mod d^2 - 1$ for $k > (2f - 1)(d^2 - 1)$.

Proof of Theorem 1.4. We note that
$$G_n/G_{2n}$$
 is an elementary abelian *p*-group;
moreover G_n/G_{2n} is a *G*-module. Let $x \in G_n$ and let us write $x = I + A$, where
 $A \in t^n M_d(\mathbb{F}_p[[t]])$. We note that $\det(x) = 1$ implies that $\operatorname{Trace}(A) \mod t^{2n} \equiv 0$.
On the other hand suppose $\operatorname{Trace}(A) \mod t^{2n} \equiv 0$; then one can construct (using
induction) an element in G_n of the above form. As *p* divides *d* if $A \mod t^{2n}$ is
a scalar, then $\operatorname{Trace}(A) \mod t^{2n} \equiv 0$. We also note that if $A \mod t^{2n}$ is a scalar,
then *G* acts trivially on $\langle xG_{2n} \rangle$. Let N_x be the pre-image of $\langle xG_{2n} \rangle$ in G_n . This
is a normal subgroup of *G* of index $p^{(2n-1)(d^2-1)-1}$. Of course the number of such
subgroups is equal to the number of $A \in t^n M_d(\mathbb{F}_p[[t]])$ such that $A \mod t^{2n}$ are
nonzero scalars divided by $p-1$. Therefore $b_{p^{(2n-1)(d^2-1)-1}}(G) \geq (p^n-1)/(p-1)$.

Acknowledgments

The authors would like to thank Dan Segal for his careful reading of an earlier version and some helpful comments.

References

- [DDMS] J. Dixon, M.P.F. Du Sautoy, A. Mann and D. Segal, Analytic Pro-p Groups, 2nd edition, Cambridge Studies in Advanced Math. 61, Cambridge University Press, Cambridge, 1999. MR 2000m:20039
- [Ja] N. Jacobson, Lie Algebras, Interscience, New York, 1962. MR 26:1345
- [LM] A. Lubotzky and A. Mann, Powerful p-groups. I, II. J. of Algebra 105 (1987), 484–515. MR 88f:20045; MR 88f:20046
- [LSh] A. Lubotzky and A. Shalev, On some Λ-analytic pro-p groups, Israel J. Math. 85 (1994), 307–337. MR 95f:20047

- [Ma] A. Mann, Subgroup growth in pro-p groups, in New Horizons in Pro-p Groups, eds: M. du Sautoy et al., Progress in Mathematics 184, Birkhäuser, Boston, 2000, pp. 233–247. CMP 2000:15
- [Sh] A. Shalev, Growth functions, p-adic analytic groups, and groups of finite coclass, J. London Math. Soc. 46 (1992), 111–122. MR 94a:20047
- [Yo] I.O. York, The Group of Formal Power Series under Substitution, Ph.D. Thesis, Nottingham, 1990.

Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin53706

 $E\text{-}mail\ address: \texttt{barnea@math.wisc.edu}$

Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113

E-mail address: guralnic@math.usc.edu