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SUBGROUP GROWTH IN SOME PRO-p GROUPS

YIFTACH BARNEA AND ROBERT GURALNICK

(Communicated by Lance W. Small)

Abstract. For a group G let an(G) be the number of subgroups of index n
and let bn(G) be the number of normal subgroups of index n. We show that

apk (SL1
2(Fp[[t]])) ≤ pk(k+5)/2 for p > 2. If Λ = Fp[[t]] and p does not divide

d or if Λ = Zp and p 6= 2 or d 6= 2, we show that for all k sufficiently large
bpk (SL1

d(Λ)) = b
pk+d2−1 (SL1

d(Λ)). On the other hand if Λ = Fp[[t]] and p

divides d, then bn(SL1
d(Λ)) is not even bounded as a function of n.

1. Introduction

For a group G, let an(G) be the number of subgroups of index n. Lubotzky
and Mann [LM] proved that a pro-p group G is p-adic analytic if and only if it has
polynomial subgroup growth; that is, there exists a constant c such that an(G) ≤ nc
(for background on p-adic analytic pro-p groups the reader is referred to [DDMS]).
In [Sh, Corollary 2.5] Shalev proved the following:

Theorem 1.1. Let G be a pro-p group which satisfies

an(G) ≤ nc logp n

for some constant c < 1
8 . Then G is p-adic analytic.

Following this result Mann [Ma] asked the following:

Question. What is the supremum of the numbers c, such that if G is a pro-p group
and an(G) < nc logp n for all large n, then G is p-adic analytic?

To continue our discussion we need the following definition.

Definition 1.1. Let Λ be a local ring with a maximal ideal M . We define the
n-congruence subgroup of SLd(Λ) to be

SLnd(Λ) = ker(SLd(Λ)→ SLd(Λ/Mn)).

The particular examples of local rings we deal with are Λ = Zp, the p-adic
integers, and M = pZp or Λ = Fp[[t]], formal power series over a field of p-elements,
and M = tFp[[t]]. It is well known that for these examples Λ, SL1

d(Λ) is a pro-p
group. Moreover, SL1

d(Fp[[t]]) is not p-adic analytic. In [Sh] it is already shown that
apk(SL1

2(Fp[[t]])) ≤ Ap2k2
for p > 2 and some constant A. We show the following:
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Theorem 1.2. Let G = SL1
2(Fp[[t]]) with p > 2. Then apk(G) ≤ pk(k+5)/2.

Thus in answer to Mann’s question we show that the supremum is no more than
1
2 (for p > 2).

We now turn our attention to the study of the lattice of normal subgroups of
SL1

d(Λ), for Λ = Zp and Λ = Fp[[t]]. Let us recall that a group G is called just
infinite if its only nontrivial normal subgroups are of finite index. It is well known
that if p 6= 2 or d 6= 2, then SL1

d(Λ) is just infinite (this is actually shown in
the proof of Lemma 4.1). In [Yo, Proposition 3.5.1] it is shown that the lattice of
normal subgroups of another just infinite pro-p group, Jp, the Nottingham group
is “periodic” (p > 3). In particular for any k, bpk(Jp) = bpk+1(Jp). We show the
following:

Theorem 1.3. Suppose Λ = Fp[[t]] and p does not divide d or Λ = Zp and p 6= 2 or
d 6= 2. There is a constant K = K(p, d) such that bpk(SL1

d(Λ)) = bpk+d2−1(SL1
d(Λ))

for all k > K.

Theorem 1.3 and the result for the Nottingham group might suggest that for any
just infinite pro-p group a similar phenomenon occurs. The following theorem is
thus somewhat surprising, as it shows that there is a big difference in the behavior
of bn(SL1

d(Fp[[t]])) in the case p divides d.

Theorem 1.4. If p divides d, then bn(SL1
d(Fp[[t]])) is not bounded as a function

of n.

Our main tool in this paper is Lie methods. It would be interesting to find a
proof of Theorem 1.3 in the case Λ = Zp based on powerful groups. This might
help to handle the case where p = d = 2.

2. Lie methods

Suppose Λ = Zp or Λ = Fp[[t]]. Let Gn = SLnd (Λ). It is straightforward to see
that (Gn, Gm) ⊆ Gn+m and Gpn ⊆ Gn+1. Thus Gn/Gn+1 is an elementary abelian
p-group. It is easy to verify that |Gn/Gn+1| = pd

2−1 and indeed this quotient is
the adjoint module for SLd(Fp).

The reader is referred to [LSh] for more details on the following construction.
Define

L(G1) =
∑

Gn/Gn+1.

If x ∈ Gn and y ∈ Gm, we define the bracket product

[xGn+1, yGm+1] = (x, y)Gn+m+1.

Extending this product by linearity gives L(G1) the structure of a Lie algebra over
Fp. It is not hard to check that L(G1) ∼= tsld(Fp)[t] — the set of polynomials with
0 constant coefficient over sld(Fp).

Let H be a closed subgroup of G1. We define

L(H) =
∑

(H ∩Gn)Gn+1/Gn+1.

The following facts are easy to verify:
1. L(H) is graded subalgebra of L(G1).
2. If K ≤ H are closed subgroups, then L(K) ⊆ L(H) and dim(L(H)/L(K)) =

logp[H : K].
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3. If H is normal, then L(H) is an ideal.
4. Gn ≤ H if and only if tnsld(Fp)[t] ⊆ L(H).
5. If L(H) is generated by d homogeneous elements, then d(H) ≤ d, where d(H)

is the minimal number of elements required to generate H topologically.
Let us remark that one can associate to the group G1/Gn the Lie algebra

tsld(Fp)[t]/(tn). Similar results to the above holds for subgroups and subalgebras.

3. The subgroup growth of SL1
2(Fp[[t]])

We first consider a question about generation of Lie subalgebras of L =
tsl2(Fp)[t]/(tn+1). There should be an analogous result for other simple Lie al-
gebras. Note that there exist Lie subalgebras of L which require the maximum
number of generators given in the result.

Proposition 3.1. Let L = tsl2(Fp)[t]/(tn+1) with p > 2. If H is a graded subalge-
bra of L of dimension d and codimension c, then H can be generated by min{c+3, d}
elements. In particular, H can be generated by no more than 3

2 (n+1) homogeneous
elements.

Proof. First note that the second statement follows from the first since H can be
generated by (1/2)(c+ d+ 3) = (3/2)(n+ 1) homogeneous elements.

Let H = H1t⊕· · ·⊕Hnt
n, where Hi ⊆ sl2(Fp), and let hi = dimHi. Similarly, let

H ′i denote the degree i component of the derived algebra [H,H ] and set h′i = dimH ′i.
We recall that if M is a nilpotent Lie algebra and S is a subalgebra, then S = M

if and only if S + [M,M ] = M [Ja, Exercise I.10]. In particular, this implies that
if M is a finite dimensional graded nilpotent Lie algebra, then M can be generated
by dim(M/[M,M ]) homogeneous elements (of course, this is also the minimum
number of generators required).

We also recall that sl2(Fp) (p > 2) is a simple Lie algebra and therefore a perfect
Lie algebra, namely equals its derived subalgebra. Let V, U be subspaces of sl2(Fp).
As dim sl2(Fp) = 3, it is easy to verify the following facts:

1. If dim V = 2, then [V, sl2(Fp)] = sl2(Fp).
2. If dim V = 1, then dim[V, sl2(Fp)] = 2.
3. If dim V = 2, then dim[V, V ] = 1.
4. If V 6= U and dimV = dimU = 2, then [V, U ] = sl2(Fp)
5. If dim V = 2 and dimU = 1, then 1 ≤ dim[V, U ] ≤ 2.
Of course, H can always be generated by d homogeneous elements.
We use an induction on n. For n = 1, 2, the result is clear. If h′n = 0, then for

all 1 ≤ i < n, [Hi, Hn−i] ⊆ H ′n; therefore hi + hn−i ≤ 3. Thus, c ≥ (3/2)(n − 1)
and d ≤ c + 3. Note in fact this argument is valid under the weaker assumption
that hi + hn−i ≤ 3 for all 1 ≤ i < n.

So we assume that hi + hn−i ≥ 4 for some i. Let j be the smallest positive
integer such that hj + hn−j ≥ 4.

If hi + hn−i ≥ 5 for some i, then h′n = 3. If h′n = 3, then by induction H/Hnt
n

can be generated by at most c + 3 homogeneous elements. Since Hnt
n ⊆ [H,H ],

this implies the same for H .
So we may assume that hi + hn−i ≤ 4 for all i and that h′n ≤ 2.
Let ∆ denote the set of integers with hi+hn−i = 4. Set e = |∆|. We notice that

d ≤ 3 + (3/2)(n− 1) + e/2 and c ≥ (3/2)(n− 1)− e/2. Thus d− e ≤ c+ 3. Since j
is minimal in ∆, n− j is maximal in ∆ and so i+ j ≤ n for all i ∈ ∆.
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First suppose that hj ≥ 2. Then [Hjt
j , Hit

i] 6= 0 for any i ∈ ∆ and since these
spaces are independent, it follows that dim[H,H ] ≥ e. Thus, dimH/[H,H ] ≤
d− e ≤ c+ 3 as required.

Finally, consider the case that hj = 1 (and so hn−j = 3 and h′n = 2). Let
i ∈ ∆. So either hi = hn−i = 2 and [Hjt

j , Hmt
m] 6= 0 for m = i, n − i or

exactly one of hi, hn−i is 3. Thus, [Hjt
j ,
⊕

i∈∆Hit
i] has dimension at least e. So

[H,H ] has dimension at least e and as in the previous paragraph, we deduce that
dimH/[H,H ] ≤ c+ 3.

Proof of Theorem 1.2. Let Gi = SLi2(Fp[[t]]). The Gi are a base for the neighbor-
hoods of the identity. As G is finitely generated for any given k, there is m big
enough such that Gm is contained in all subgroups of index pk (actually Shalev [Sh,
Theorem 4.1] proved that m = k+1 is sufficient). Therefore apk(G) = apk(G/Gm).
For any group H let gn(H) be the supremum on the number of generators of sub-
groups of index n. From [LSh, Lemma 4.1] we see that

apk(G) = apk(G/Gm) ≤ pg1(G/Gm)+gp(G/Gm)+···+g
pk−1 (G/Gm).

By fact 5 in Section 2, the remark following it and Proposition 3.1 we deduce
that

apk(G1) ≤ p0+1+2+···+(k−1)+3k = pk(k+5)/2.

4. The normal subgroup growth of SL1
d(Λ)

Suppose Λ = Zp or Λ = Fp[[t]]. Let G = SL1
d(Λ) and Gn = SLnd(Λ).

Lemma 4.1. Suppose Λ = Fp[[t]] and p does not divide d or Λ = Zp and p 6= 2 or
d 6= 2. Then there is a constant f = f(p, d) such that, for any normal subgroup N
of G, there exists an n such that Gn+f < N ≤ Gn.

Proof. Let Λ = Fp[[t]] or Λ = Zp. Let n be maximal such that N ≤ Gn. Therefore
we can find x ∈ N such that x /∈ Gn+1. Passing to L(N) =

∑
i≥1 Lit

i, we can find a
homogeneous element x̄tn ∈ L(N), where 0 6= x̄ ∈ sld(Fp). Define U1 = [x̄, sld(Fp)]
and by induction Um+1 = [Um, sld(Fp)]. Define U =

⋃
Um. This is a nontrivial ideal

of sld(Fp). If p does not divide d, then sld(Fp) is a simple Lie algebra. Therefore
U = sld(Fp). As sld(Fp) is perfect, we see that Um ⊆ Um+1 for all m and moreover,
equality holds if and only if Um = sld(Fp). As dim(sld(Fp)) = d2 − 1, we deduce
that Ud2−1 = sld(Fp).

Since N is normal, L(N) is an ideal and thus [L(N), sld(Fp)t] ⊆ L(N). Therefore
Um ⊆ Ln+mand sld(Fp) = Ln+d2+j−1 for j = 0, 1, . . . . We now use fact 4 from
section two to deduce that Gn+d2−1 < N .

Suppose now that Λ = Zp and p divides d > 2. Let s be the largest positive
integer such that ps divides d. Since p 6= 2 or d 6= 2, sld(Fp) is perfect Lie algebra
and its only non-trivial ideal is the center. Hence if U is not central, we can argue
as above. Suppose that x̄ is a scalar. Let x = I + A, where A ∈ pnMd(Zp).
As x̄ is a scalar we can write A = pnλI + B, where λ is an invertible element of
Zp, B ∈ prMd(Zp), r > n, and B mod pr+1 is not a scalar. Hence we can write
x = (1 + pnλ)I(I + C) where C ∈ prMd(Zp). We note that

det((1 + pnλ)I) = 1 +
∑
i≥1

(
d

i

)
pniλi.
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Let t be maximal such that, for all i ≥ 1,
(
d
i

)
pni mod pt ≡ 0. We notice that

when n > s, t = n + s. Hence t − n is bounded by a function of p and d. As
1 = det(x) = det((1 + pnλ)I) det(I + C) and det((1 + pnλ)I) mod pt+1 6≡ 0, one
can deduce that C mod pt+1 6≡ 0; moreover as p divides d, C mod pt+1 is not a
scalar.

It is not hard to find an element y ∈ G which has the form y = I + D, where
D ∈ pMd(Zp) and [D,C] mod pt+2 is not a scalar. Set z = (x, y) ∈ Gt+1. We leave
to the reader to verify that z = I + E, where E ∈ pt+1Md(Zp), and E mod pt+2 ≡
[D,C]. From here the proof goes as in the case where p divides d, where we replace
x by z, and noticing that t+ d2 − n is bounded in terms of p and d.

Remarks. 1. The case where p does not divide d already appeared in an unpublished
preprint by Aner Shalev.

2. In the course of the proof we actually showed that if Λ = Fp[[t]] and p does
not divide d or Λ = Zp and p 6= 2 or d 6= 2, then G is just infinite.

3. A similar argument to the case where Λ = Zp and p divides d can be used to
show that G is just infinite even when Λ = Fp[[t]] as long as p 6= 2 or d 6= 2.

We note that conjugation in G induces a structure of G-set on Gn/Gn+d2−1 for
all n.

Lemma 4.2. Suppose Λ = Fp[[t]] and p does not divide d or Λ = Zp and p 6= 2 or
d 6= 2. Let f be as in the previous lemma. Then there is one to one correspondence
between the set of normal subgroups of G and the pairs (n,H) such that H is a
subgroup of Gn/Gn+f which is not contained in Gn−1/Gn+f and H is G-invariant.

Proof. Let N be a normal subgroup of G. By Lemma 4.1 we can find n such that
Gn+f < N ≤ Gn. We choose n to be maximal. Let H = N/Gn+f . Since n is
maximal, H is not contained in Gn−1/Gn+f . As N is normal, H is G-invariant.
On the other hand, given a pair (n,H), we take N to be the pre-image of H under
the quotient map from Gn onto Gn/Gn+f . It is easy to verify that these maps are
the inverses of each other.

Lemma 4.3. Let f be some constant. Then for n > f there is a map

ϕ : Gn/Gn+f → Gn+1/Gn+f+1

such that ϕ is an equivariant group isomorphism and

ϕ(Gn+1/Gn+f ) = Gn+2/Gn+f+1.

Proof. First let us deal with the case Λ = Fp[[t]]. Notice that every element of Gn
has the form I +A, where A ∈ tnMd(Fp[[t]]). We leave to the reader to check that
if n > f , then the fact that the determinants of elements in G are one implies that
Trace(A) mod tn+f ≡ 0. On the other hand if Trace(A) mod tn+f ≡ 0, then one
can construct (using induction) an element in Gn of the above form.

We define a map

ϕ : Gn/Gn+f → Gn+1/Gn+f+1.

By

ϕ((I +A)Gn+f ) = (I + tA)Gn+f+1
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(this is a slight abuse of notation as I + tA does not necessarily have determinant
1). It is easy to check that ϕ satisfies the required conditions.

For Λ = Zp the argument is very similar when we replace t by p.

Proof Theorem 1.3. Let f be as in Lemma 4.1. For n > f we define c(s) to be
the number of G-invariant subgroups of Gn/Gn+f which are not contained in
Gn+1/Gn+f and have index ps. By Lemma 4.3 this is well defined and in par-
ticular does not depend on n.

Let us define bk,n(G) to be the number of normal subgroups of index pk of G
which contain Gn+f and are contained in Gn and n is maximal under this property.
If H is a normal subgroup of index pk, then by Lemma 4.1 there is n such that
Gn+f < H ≤ Gn. We deduce that p(n+f−1)(d2−1) > pk ≥ p(n−1)(d2−1); thus
k

d2−1 + 1− f < n ≤ k
d2−1 + 1. We note that if k > (2f − 1)(d2 − 1), then n > f .

By Lemma 4.2 and the above argument we see that for n > f the following is
true:

bk,n(G) =


0 if n ≤ k

d2−1 + 1− f,
0 if k

d2−1 + 1 < n,

c(k − (n− 1)(d2 − 1)) otherwise.

By Lemma 4.2 for k > (2f − 1)(d2 − 1)

bpk(G) =
∑
n≥1

bk,n(G) =
∑

k
d2−1

+1−f<n≤ k
d2−1

+1

c(k − (n− 1)(d2 − 1)).

Thus bpk(G) depends only on k mod d2 − 1 for k > (2f − 1)(d2 − 1).

Proof of Theorem 1.4. We note that Gn/G2n is an elementary abelian p-group;
moreover Gn/G2n is a G-module. Let x ∈ Gn and let us write x = I + A, where
A ∈ tnMd(Fp[[t]]). We note that det(x) = 1 implies that Trace(A) mod t2n ≡ 0.
On the other hand suppose Trace(A) mod t2n ≡ 0; then one can construct (using
induction) an element in Gn of the above form. As p divides d if A mod t2n is
a scalar, then Trace(A) mod t2n ≡ 0. We also note that if A mod t2n is a scalar,
then G acts trivially on 〈xG2n〉. Let Nx be the pre-image of 〈xG2n〉 in Gn. This
is a normal subgroup of G of index p(2n−1)(d2−1)−1. Of course the number of such
subgroups is equal to the number of A ∈ tnMd(Fp[[t]]) such that A mod t2n are
nonzero scalars divided by p−1. Therefore bp(2n−1)(d2−1)−1(G) ≥ (pn−1)/(p−1).
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