The point spectrum of the Dirac operator on noncompact symmetric spaces
HTML articles powered by AMS MathViewer
- by S. Goette and U. Semmelmann
- Proc. Amer. Math. Soc. 130 (2002), 915-923
- DOI: https://doi.org/10.1090/S0002-9939-01-06158-5
- Published electronically: October 1, 2001
- PDF | Request permission
Abstract:
In this note, we consider the Dirac operator $D$ on a Riemannian symmetric space $M$ of noncompact type. Using representation theory, we show that $D$ has point spectrum iff the ${\hat A}$-genus of its compact dual does not vanish. In this case, if $M$ is irreducible, then $M=\mathrm {U}(p,q)/\mathrm {U}(p)\times \mathrm {U}(q)$ with $p+q$ odd, and $\operatorname {Spec}_{p}(D)=\{0\}$.References
- S. Bergmann and J. Marcinkiewicz, Sur les fonctions analytiques de deux variables complexes, Fund. Math. 33 (1939), 75–94 (French). MR 57, DOI 10.4064/fm-33-1-75-94
- P. D. Baier, Über den Diracoperator auf Mannigfaltigkeiten mit Zylinderenden, Diplomarbeit, Universität Freiburg (1997).
- Christian Bär, The Dirac fundamental tone of the hyperbolic space, Geom. Dedicata 41 (1992), no. 1, 103–107. MR 1147505, DOI 10.1007/BF00181546
- M. Berline, E. Getzler, N. Verne, Heat kernels and Dirac operators, Springer, Berlin-Heidelberg-New York (1992).
- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. II, Amer. J. Math. 81 (1959), 315–382. MR 110105, DOI 10.2307/2372747
- Raoul Bott, The index theorem for homogeneous differential operators, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 167–186. MR 0182022
- Ulrich Bunke, The spectrum of the Dirac operator on the hyperbolic space, Math. Nachr. 153 (1991), 179–190. MR 1131941, DOI 10.1002/mana.19911530117
- M. Cahen and S. Gutt, Spin structures on compact simply connected Riemannian symmetric spaces, Proceedings of the Workshop on Clifford Algebra, Clifford Analysis and their Applications in Mathematical Physics (Ghent, 1988), 1988, pp. 209–242. MR 976428
- Roberto Camporesi, The spinor heat kernel in maximally symmetric spaces, Comm. Math. Phys. 148 (1992), no. 2, 283–308. MR 1178146
- Roberto Camporesi and Atsushi Higuchi, On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996), no. 1, 1–18. MR 1407401, DOI 10.1016/0393-0440(95)00042-9
- Alain Connes and Henri Moscovici, The $L^{2}$-index theorem for homogeneous spaces of Lie groups, Ann. of Math. (2) 115 (1982), no. 2, 291–330. MR 647808, DOI 10.2307/1971393
- Mogens Flensted-Jensen and Kiyosato Okamoto, An explicit construction of the $K$-finite vectors in the discrete series for an isotropic semisimple symmetric space, Mém. Soc. Math. France (N.S.) 15 (1984), 157–199. Harmonic analysis on Lie groups and symmetric spaces (Kleebach, 1983). MR 789084
- Esther Galina and Jorge Vargas, Eigenvalues and eigenspaces for the twisted Dirac operator over $\textrm {SU}(N,1)$ and $\textrm {Spin}(2N,1)$, Trans. Amer. Math. Soc. 345 (1994), no. 1, 97–113. MR 1189792, DOI 10.1090/S0002-9947-1994-1189792-6
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- F. Hirzebruch and P. Slodowy, Elliptic genera, involutions, and homogeneous spin manifolds, Geom. Dedicata 35 (1990), no. 1-3, 309–343. MR 1066570, DOI 10.1007/BF00147351
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- K. R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1–30.
- S. Seifarth, The discrete spectrum of the Dirac operators on certain symmetric spaces, Preprint No. 25 of the IAAS, Berlin (1992).
- Joseph A. Wolf, Essential self-adjointness for the Dirac operator and its square, Indiana Univ. Math. J. 22 (1972/73), 611–640. MR 311248, DOI 10.1512/iumj.1973.22.22051
Bibliographic Information
- S. Goette
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Email: goette@blaschke.mathematik.uni-tuebingen.de
- U. Semmelmann
- Affiliation: Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 München, Germany
- Email: semmelma@rz.mathematik.uni-muenchen.de
- Received by editor(s): September 18, 2000
- Published electronically: October 1, 2001
- Additional Notes: Both authors were supported by a research fellowship of the DFG
- Communicated by: Rebecca Herb
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 915-923
- MSC (2000): Primary 58C40; Secondary 53C35, 22E30
- DOI: https://doi.org/10.1090/S0002-9939-01-06158-5
- MathSciNet review: 1866049