Metric entropy of convex hulls in type $p$ spaces—The critical case
HTML articles powered by AMS MathViewer
- by Jakob Creutzig and Ingo Steinwart
- Proc. Amer. Math. Soc. 130 (2002), 733-743
- DOI: https://doi.org/10.1090/S0002-9939-01-06256-6
- Published electronically: August 28, 2001
- PDF | Request permission
Abstract:
Given a precompact subset $A$ of a type $p$ Banach space $E$, where $p\in (1,2]$, we prove that for every $\beta \in [0,1)$ and all $n \in \mathbb {N}$ \begin{equation*} \sup _{k \le n}k^{1/p’} (\log k)^{\beta -1} e_k(\mathrm {aco } A) \ \le \ c \ \sup _{k \le n}k^{1/p’} (\log k)^{\beta }e_k(A) \end{equation*} holds, where $\mathrm {aco } A$ is the absolutely convex hull of $A$ and $e_k(.)$ denotes the $k^{th}$ dyadic entropy number. With this inequality we show in particular that for given $A$ and $\beta \in ( -\infty , 1)$ with $e_n(A) \le n^{-1/p’} (\log n)^{-\beta }$ for all $n \in \mathbb {N}$ the inequality $e_n(\mathrm {aco } A) \le c\ n^{-1/p’}(\log n)^{-\beta + 1}$ holds true for all $n \in \mathbb {N}$. We also prove that this estimate is asymptotically optimal whenever $E$ has no better type than $p$. For $\beta =0$ this answers a question raised by Carl, Kyrezi, and Pajor which has been solved up to now only for the Hilbert space case by F. Gao.References
- Keith Ball and Alain Pajor, The entropy of convex bodies with “few” extreme points, Geometry of Banach spaces (Strobl, 1989) London Math. Soc. Lecture Note Ser., vol. 158, Cambridge Univ. Press, Cambridge, 1990, pp. 25–32. MR 1110183
- Bernd Carl, Ioanna Kyrezi, and Alain Pajor, Metric entropy of convex hulls in Banach spaces, J. London Math. Soc. (2) 60 (1999), no. 3, 871–896. MR 1753820, DOI 10.1112/S0024610799008005
- R. M. Dudley, Universal Donsker classes and metric entropy, Ann. Probab. 15 (1987), no. 4, 1306–1326. MR 905333
- Jørgen Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186. MR 356155, DOI 10.4064/sm-52-2-159-186
- F. Gao, Metric entropy of convex hulls, preprint.
- W.V. Li and W. Linde, Metric Entropy of Convex Hulls in Hilbert spaces, Studia Math. 139 (2000), 29-45.
- Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 443015, DOI 10.4064/sm-58-1-45-90
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- G. Pisier, Remarques sur un résultat non publié de B. Maurey, Seminar on Functional Analysis, 1980–1981, École Polytech., Palaiseau, 1981, pp. Exp. No. V, 13 (French). MR 659306
- Carsten Schütt, Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory 40 (1984), no. 2, 121–128. MR 732693, DOI 10.1016/0021-9045(84)90021-2
- Ingo Steinwart, Entropy of $C(K)$-valued operators, J. Approx. Theory 103 (2000), no. 2, 302–328. MR 1749968, DOI 10.1006/jath.1999.3428
- I. Steinwart, Entropy of $C(K)-$valued operators and some applications, Dissertation, Jena 2000. http://www.minet.uni-jena.de/Math-Net/reports/shadows/99-51report.html
Bibliographic Information
- Jakob Creutzig
- Affiliation: FSU Jena, Ernst–Abbe–Platz 1-4, 07743 Jena, Germany
- Email: jakob@creutzig.de
- Ingo Steinwart
- Affiliation: FSU Jena, Ernst–Abbe–Platz 1-4, 07743 Jena, Germany
- Email: steinwart@minet.uni-jena.de
- Received by editor(s): April 18, 2000
- Received by editor(s) in revised form: September 6, 2000
- Published electronically: August 28, 2001
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 733-743
- MSC (2000): Primary 41A46; Secondary 46B07, 46B20, 47B37, 52A07
- DOI: https://doi.org/10.1090/S0002-9939-01-06256-6
- MathSciNet review: 1866028