ON THE NATANZON-TURAEV COMPACTIFICATION
OF THE HURWITZ SPACE

STEVEN P. DIAZ

(Communicated by Michael Stillman)

ABSTRACT. Natanzon and Turaev have constructed by topological methods a compactification of the Hurwitz space, that is, the space of simple branched covers of the two-sphere. Here we show that this compactification is homeomorphic to a compactification mentioned by Diaz and Edidin (in 1996) that was constructed by algebraic methods. Using this we are able to show by example that the Natanzon-Turaev compactification can be singular, that is, not a manifold.

1. INTRODUCTION

The Hurwitz space $H_{n,w}$ is the set of all n sheeted connected coverings of the sphere S^2 simply branched over exactly w distinct points and otherwise unbranched. Hurwitz [Hu] showed a natural way to make $H_{n,w}$ into a complex manifold of complex dimension w. The space $H_{n,w}$ is not compact. When two or more distinct branch points approach each other the limit of the corresponding covers will not be a cover of the same type. Various compactifications of $H_{n,w}$ and closely related spaces have been constructed and studied by methods of algebraic geometry; see for instance [HM], [DE], and [M]. In [NT] Natanzon and Turaev construct a compactification of $H_{n,w}$ using topological methods. In this paper we show that the compactification constructed in [NT] is homeomorphic to a compactification in [DE].

This allows us to answer some questions brought up in [NT]. Natanzon and Turaev point out that there are no known topological descriptions of the compactifications in algebraic geometry. In view of the homeomorphism we construct, the Natanzon-Turaev compactification is a topological description of one of the compactifications from algebraic geometry. Finally, Natanzon and Turaev asked about the local structure of their compactification, in particular, is it a complex manifold? Methods of algebraic geometry allow one to analyse the local structure of the compactification from [DE] to which the Natanzon-Turaev compactification is homeomorphic. Using this we construct an example to show that the Natanzon-Turaev compactification can be singular, that is, not a complex manifold.
2. The homeomorphism

We start by describing the Natanzon-Turaev compactification and the compactification from [DE] to which it is homeomorphic.

First we describe the Natanzon-Turaev compactification. From the Riemann-Hurwitz formula one deduces that the genus of the cover of S^2 in an element of $H^{n,w}$ is $g = \frac{1}{2}(w - 2n + 2)$. Fix a closed oriented connected (though [NT] does not require connected) surface Σ of genus g. Define $H(\Sigma, n)$ to be the set of equivalence classes of n-sheeted simple branched coverings $f : \Sigma \to S^2$, where the equivalence relation is: $f : \Sigma \to S^2$ and $f' : \Sigma \to S^2$ are equivalent if and only if there is a homeomorphism $\alpha : \Sigma \to \Sigma$ such that $f = f'\alpha$. $H(\Sigma, n)$ is the Hurwitz space $H^{n,w}$. Natanzon and Turaev construct a compactification $N(\Sigma, n)$ of $H(\Sigma, n)$. The points of $N(\Sigma, n)$ are equivalence classes of decorated functions, where Natanzon and Turaev define decorated functions and their equivalence as follows. We quote directly from [NT].

Definition 2.1. A decorated function (on the surface Σ) is a triple $(f, E, \{D_e\}_{e \in E})$ where $f : \Sigma \to S^2$ is a simple branched covering, E is a finite subset of S^2 disjoint from the set of branch points of f, and $\{D_e\}_{e \in E}$ are disjoint closed 2-discs embedded in S^2 such that: $e \in \text{Int} D_e$ for all $e \in E$, each D_e contains at least two branch points of f, and the circles $\{\partial D_e\}_e$ do not contain branch points of f.

An isotopy of a decorated function $(f, E, \{D_e\}_e)$ is a family of decorated functions $(\varphi_t f, E, \{\varphi_t(D_e)\}_e)$ where $\{\varphi_t : S^2 \to S^2\}_{t \in [0, 1]}$ is an isotopy of the identity map $\varphi_0 = \text{id}_{S^2}$ such that for all $t \in [0, 1]$ the homeomorphism φ_t preserves (pointwise) E and the branch points of f lying outside $\bigcup_e D_e$.

We say that two decorated functions $(f, E, \{D_e\}_e)$ and $(f', E', \{D'_e\}_{e \in E'})$ are equivalent if $E = E'$ and f' may be obtained from f by an isotopy and/or composition with a homeomorphism $\Sigma \to \Sigma$. (The isotopy must also take each D_e to D'_e.)

Recall that the set of unordered sets of k not necessarily distinct points in complex projective one-space $\mathbb{CP}^1 = S^2$ is naturally identified with complex projective k-space $\mathbb{CP}^k = \mathbb{P}^k$. There is a natural map $q : H(\Sigma, n) = H^{n,w} \to \mathbb{P}^w$ which sends a cover $(f : \Sigma \to S^2) \in H(\Sigma, n)$ to its branch points. This extends to a map (also denoted q) $q : N(\Sigma, n) \to \mathbb{P}^w$ which sends a decorated function $(f, E, \{D_e\}_e)$ to the set consisting of the branch points of f outside of $\bigcup_e D_e$ each counted once, plus the points of E each counted with multiplicity equal to the number of branch points of f inside the corresponding D_e. As mentioned in [NT] before Lemma 2.2 the extended mapping q is continuous and open.

Now we describe the algebraic compactification mentioned in [DE]. In that article the authors denote the compactification by $\overline{\mathcal{M}}^{k,b}_H$ (k corresponds to n and b to w in $H^{n,w}$). It has been known since Hurwitz that $q : H(\Sigma, n) \to \mathbb{P}^w$ is finite. Therefore the function field of $H(\Sigma, n)$ is a finite extension of the function field of \mathbb{P}^w. The compactification $\overline{\mathcal{M}}^{k,b}_H$ is defined to be the normalization of \mathbb{P}^w in the function field of $H(\Sigma, n)$. The map $q : H(\Sigma, n) \to \mathbb{P}^w$ extends to a regular algebraic morphism $\pi : \overline{\mathcal{M}}^{k,b}_H \to \mathbb{P}^w$.

The homeomorphism $g : N(\Sigma, n) \to \overline{\mathcal{M}}^{k,b}_H$ that we claim to exist will be defined to be the identity on $H(\Sigma, n) \subset N(\Sigma, n)$ and $H(\Sigma, n) \subset \overline{\mathcal{M}}^{k,b}_H$. It will also commute with the maps q and π to \mathbb{P}^w. What is left to define are the values of g on the points of $N(\Sigma, n)$ lying over points of \mathbb{P}^w corresponding to nondistinct points in \mathbb{P}^1.
Denote by \(D \) the points of \(\mathbb{P}^w \) corresponding to nondistinct sets of \(w \) points in \(\mathbb{P}^1 \). Let \(p \in D \). Lemma 4.3 of [DE], which was proved for \(\overline{\mathcal{H}}_{k,b} \) can in the same way be proven for \(\overline{\mathcal{H}}_{k,b} \) to obtain the following.

Lemma 2.1. Pick a small connected neighborhood (say any small open ball) \(B \) of \(p \) in \(\mathbb{P}^w \), and pick a point \(r \in B - D \). The fundamental group of \(B - D \) with base point \(r \) acts via monodromy on \(\pi^{-1}(r) \). Define an equivalence relation on \(\pi^{-1}(r) \) by saying that two points are equivalent if and only if they can be taken to each other by the monodromy action. For \(B \) sufficiently small the following are true.

1. Two points of \(\pi^{-1}(r) \) lie in the same monodromy equivalence class iff they lie in the same connected component of \(\pi^{-1}(B - D) \).
2. The closure of each connected component of \(\pi^{-1}(B - D) \) in \(\pi^{-1}(B) \) has exactly one point over \(p \).
3. The closures of the connected components of \(\pi^{-1}(B - D) \) in \(\pi^{-1}(B) \) are all disjoint from each other.

For our purposes the point of this lemma is the following obvious corollary.

Corollary 2.1. For \(B \) sufficiently small there is a natural bijection between the points of \(\pi^{-1}(p) \) and the connected components of \(\pi^{-1}(B - D) \). The bijection is given by associating to each connected component \(X \) of \(\pi^{-1}(B - D) \) the intersection of the closure of \(X \) in \(\pi^{-1}(B) \) with \(\pi^{-1}(p) \).

Next we see that exactly the same result is true if we replace \(\pi^{-1}(p) \) by \(\mu^{-1}(p) \).

Proposition 2.1. For \(B \) as in Lemma 2.7 sufficiently small there is a natural bijection between the points of \(\mu^{-1}(p) \) and the connected components of \(\mu^{-1}(B - D) \). The bijection is given by associating to each connected component \(X \) of \(\mu^{-1}(B - D) \) the intersection of the closure of \(X \) in \(\mu^{-1}(B) \) with \(\mu^{-1}(p) \).

Proof. The point \(p \) must consist of \(\ell \) distinct points \(p_1, \ldots, p_\ell \) and \(\ell' \) multiple points \(e_1, \ldots, e_{\ell'} \) of \(\mathbb{P}^1 \). Say the multiplicity of \(e_i \) is \(k_i \).

Step 1. Given any connected component \(X \) of \(\mu^{-1}(B - D) \) we can find an \((f : \Sigma \to S^2) \in X \) such that all the \(p_i \)'s are branch points of \(f \) and none of the \(e_i \)'s are branch points of \(f \). We can then create a decorated function \((f, E, \{D_e\}_e) \) representing a point of \(\mu^{-1}(p) \) as follows.

First, the existence of such an \(f \) is clear because \(q(X) = B - D \). Because \(f \in X \), for small \(B \) we have that if we let \(D_{e_i} \) be a small disk around \(e_i \), then \(D_{e_i} \) contains exactly \(k_i \) branch points. Letting \(E = \{ e_1, \ldots, e_{\ell'} \} \), \((f, E, \{D_e\}_e) \) represents a point of \(\mu^{-1}(p) \).

Step 2. Given any point \(x_0 \) of \(\mu^{-1}(p) \) we can choose a decorated function \((f, E, \{D_e\}_e) \) representing \(x_0 \) that is obtained in the manner of Step 1, for some connected component of \(\mu^{-1}(B - D) \) possibly depending on \(x_0 \).

It is simply a matter of using an isotopy \(\varphi_i \) to shrink the disks \(D_e \) until they are small enough so that \(\varphi_i f \in \mu^{-1}(B - D) \).

Step 3. Two decorated functions \((f, E, \{D_e\}_e) \) and \((f', E, \{D'_e\}_e) \) obtained as in steps 1 and 2 are equivalent iff \(f \) and \(f' \) lie in the same connected component of \(\mu^{-1}(B - D) \).

By applying isotopies we can assume the disks \(D_e = D'_e \) for all \(e \in E \). If \(f \) and \(f' \) lie in the same connected component \(X \), then a path in \(X \) connecting them can be used to create the desired equivalence as in [NT], proof of Theorem 3.9.
Given \(f \) and \(f' \) correspond to the branch points of \(X \) inside disks centered at \(P \) the resulting path in \(D \) will be an open neighborhood of \(Q \). For this it is sufficient to show that for each \(Q \) of connected components of \(q \) open neighborhoods would lead to two connected components, a contradiction.

From steps 1–3 we see that the number of points in \(q^{-1}(p) \) equals the number of connected components of \(q^{-1}(B - D) \). To complete the proof it is enough to show that no connected component of \(q^{-1}(B - D) \) can have more than one point of \(q^{-1}(p) \) in its closure. Assume to the contrary that some connected component had at least two points of \(q^{-1}(p) \) in its closure. From [NT], Lemma 2.2, we know that \(N(\Sigma, n) \) is Hausdorff. We can find disjoint open neighborhoods of these two points. After possibly shrinking \(B \) the intersection of \(q^{-1}(B - D) \) with these two disjoint open neighborhoods would lead to two connected components, a contradiction. \(\square \)

We can now define the map \(g \) on points of \(N(\Sigma, n) \) lying over points of \(D \subset \mathbb{P}^w \). Given \(p \in D \) and \(x \in q^{-1}(p) \), for a sufficiently small open ball \(B \) around \(p \), \(x \) will be the only point of \(q^{-1}(p) \) lying in the closure of some connected component \(X \) of \(q^{-1}(B - D) \). Similarly, the closure of \(X \) in \(\pi^{-1}(B) \) contains a unique point \(y \) of \(\pi^{-1}(p) \). Define \(g(x) = y \).

Proposition 2.2. The map \(g \) is a homeomorphism.

Proof. It is clear that \(g \) is bijective. We show that \(g \) is continuous. The proof that \(g^{-1} \) is continuous is similar.

Let \(U \subset \overline{SH}_{k,b} \) be an open set. We wish to show that \(g^{-1}(U) \subset N(\Sigma, n) \) is open. For this it is sufficient to show that for each \(x \in g^{-1}(U) \) we can find an open set \(V_x \) of \(N(\Sigma, n) \) with \(x \in V_x \subset g^{-1}(U) \). Clearly this can be done for \(x \in H(\Sigma, n) \) so we assume \(x \in N(\Sigma, n) - H(\Sigma, n) \). Set \(y = g(x) \). For a sufficiently small ball \(B \) around \(\pi(y) \) the connected component \(Y \) of \(\pi^{-1}(B) \) containing \(y \) will be an open neighborhood of \(y \) contained in \(U \). The connected component \(X \) of \(q^{-1}(B) \) containing \(x \) will be an open neighborhood of \(x \). We wish to show \(g(X) \subset Y \), so that \(X \subset g^{-1}(U) \). Clearly \(g(X \cap H(\Sigma, n)) = Y \cap H(\Sigma, n) \), in fact \(X \cap H(\Sigma, n) = Y \cap H(\Sigma, n) \). Pick any \(x_0 \in X - H(\Sigma, n) \). To compute \(g(x_0) \) we find a sufficiently small ball \(B_0 \) around \(q(x_0) \), we can assume \(B_0 \subset B \), so that Corollary 2.1 and Proposition 2.1 apply. Say \(X_0 \) is the connected component of \(q^{-1}(B_0 - D) \) with \(x_0 \) in its closure. Then \(g(x_0) \) will be the point over \(q(x_0) \) in the closure of \(X_0 \) in \(\pi^{-1}(B_0) \). But \(B_0 \subset B \) says \(X_0 \subset X \cap H(\Sigma, n) = Y \cap H(\Sigma, n) \), so \(g(x_0) \in Y \). \(\square \)

As pointed out in [DE], section 4.4, \(\overline{SH}_{k,b} \) is a projective variety and it is certainly normal. In view of the homeomorphism \(g \) we could define a complex structure on
that singularities. N codimension at least 2. As we shall see in the next section $N(\Sigma, n)$ can have singularities.

3. A singular example

We shall study $N(\Sigma, n)$ when $\Sigma = S^2 = \mathbb{P}^1$ and $n = 3$. Thus we are studying degree three covers of S^2 simply branched at four points. We have the map $q : N(S^2, 3) \to \mathbb{P}^4$. We will show that over points of \mathbb{P}^4 corresponding to two distinct points of \mathbb{P}^1 each taken with multiplicity 2, $N(S^2, 3)$ has two points—one nonsingular and one singular.

Let $D \subset \mathbb{P}^4$ be the discriminant locus consisting of nondistinct points and fix $O \in D$ where O corresponds to two distinct points each with multiplicity 2. Locally near O, D consists of two smooth branches crossing transversally. Each branch corresponds to allowing one of the two multiplicity 2 points to become two distinct points. Pick a point $P \in \mathbb{P}^4 - D$ near O. By standard techniques from Hurwitz space theory (see [F], proof of Proposition 1.5, [A], proof of Theorem 2.7, or [DE], section 4.2 shortly before Lemma 4.2) the fiber of q over P corresponds to equivalence classes of ordered 4-tuples of simple transpositions $[\sigma_1, \sigma_2, \sigma_3, \sigma_4]$, $\sigma_i \in S_3$ (the symmetric group on three letters), such that the product $\sigma_1 \sigma_2 \sigma_3 \sigma_4 = (1)$ and $\{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ generates a transitive subgroup of S_3, where the equivalence relation is $[\sigma_1, \sigma_2, \sigma_3, \sigma_4]$ is equivalent to $[\tau_1, \tau_2, \tau_3, \tau_4]$ if there exists an $\alpha \in S_3$ such that $\sigma_i = \alpha \tau_i \alpha^{-1}$, $i = 1, \ldots, 4$. Each σ_i represents the ramification point over one of the four points of \mathbb{P}^1 represented by P. One computes that over P there are four points which we may represent as: $[(12), (12), (23), (23)]$, $[(12), (23), (12), (13)]$, $[(12), (23), (13), (23)]$, and $[(12), (23), (23), (12)]$.

We may assume that we have set things up so that one branch of D near O corresponds to the first two points becoming one double point and the other branch represents the last two points becoming one double point. Again from standard Hurwitz space techniques (see [F], proof of Proposition 1.5, [A], proof of Theorem 2.7, or [DE], end of section 4.2) we see that the monodromy action on the inverse image of P generated by a loop based at P going around branch 1 is generated by $[\sigma_1, \sigma_2, \sigma_3, \sigma_2] \mapsto [\sigma_2, \sigma_2^{-1} \sigma_1 \sigma_2, \sigma_3, \sigma_4]$ and around branch 2 it is $[\sigma_1, \sigma_2, \sigma_3, \sigma_4] \mapsto [\sigma_1, \sigma_2, \sigma_4, \sigma_4^{-1} \sigma_3 \sigma_4]$. One computes that in both cases $[(12), (12), (23), (23)]$ does not move but that the other three points are permuted cyclically. Remember that after applying the monodromy transformation you might need to conjugate by an appropriate element of S_3 to get the ordered 4-tuple to be one of the four we have chosen to represent the fiber.

Thus over a small neighborhood of O in \mathbb{P}^w, $N(S^2, 3)$ has two components. One is a single sheet mapping isomorphically onto the small neighborhood. This gives the nonsingular point of $q^{-1}(O)$. The other component consists of three sheets all coming together and ramifying to order 3 over each branch of D. We now concentrate on that component; call it X.

Choose local coordinates u, v, x, y on \mathbb{P}^4 near O so that D has local equation $xy = 0$. The ramification to order 3 along both $x = 0$ and $y = 0$ says that in X, xy has a cube root. In \mathbb{C}^5 with coordinates u, v, x, y, z take the hypersurface $X' = \{xy = z^3\}$. X' maps to \mathbb{P}^4 by $(u, v, x, y, z) \mapsto (u, v, x, y)$ (locally near O of course). One easily computes that the singularities of X' are $x = y = z = 0$.
X' is normal because it is a hypersurface with singularities in codimension greater than 1; see [Ha], Proposition II.8.23. X' also has the appropriate monodromy along $xy = 0$. By uniqueness of normalization X' near $(0, \ldots, 0)$ is isomorphic to X near $q^{-1}(O) \cap X$. Thus X is singular.

Even if we get a loop backwards in the monodromy the only other possibility is $z^3 = x^2 y$ which also has a singular normalization.

As a final remark we note that since $\overline{SH}_{k,b}$ is normal any nonsingular variety Z finite over \mathbb{P}^w compactifying $H^{n,w}$ would be isomorphic to $\overline{SH}_{k,b}$. Since a nonsingular variety is normal such a Z would have to be the normalization of \mathbb{P}^w in the function field of $H^{n,w}$, hence equal to $\overline{SH}_{k,b}$. Thus we cannot make $N(S^2,3)$ nonsingular by finding a different complex structure to put on it.

References

Department of Mathematics, Syracuse University, Syracuse, New York 13244

E-mail address: spdiaz@mailbox.syr.edu