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N-COMPACTNESS AND WEIGHTED COMPOSITION MAPS

JESÚS ARAUJO

(Communicated by Alan Dow)

Abstract. In this paper we study some conditions on (not necessarily con-
tinuous) linear maps T between spaces of real- or complex-valued continuous
functions C(X) and C(Y ) which allow us to describe them as weighted compo-
sition maps. This description depends strongly on the topology in X; namely,
it can be given when X is N-compact, but cannot in general if some kind of
connectedness on X is assumed. Finally we also give an infimum-preserving
version of the Banach-Stone theorem. The results are also proved for spaces
of bounded continuous functions when K is a field endowed with a nonar-
chimedean valuation and it is not locally compact.

1. Introduction

The classical Banach-Stone theorem states that, for Hausdorff compact spaces
X and Y , if T is a surjective linear isometry between the real- or complex-valued
spaces of continuous functions C(X) and C(Y ), then it is a weighted composition
map which derives in a natural way from a homeomorphism. That is, there are a
(surjective) homeomorphism h : Y → X and a function a ∈ C(Y ), |a(y)| = 1 for
every y ∈ Y , such that Tf = a · f ◦ h for every f ∈ C(X).

On the other hand, a slight modification of the requirements on T derives in the
fact that the result is no longer true. For instance, if T is a continuous isomorphism
instead of an isometry, we cannot obtain in general a description of T as a weighted
composition map.

Of course, in the results mentioned above we consider spaces endowed with a
norm. Our aim here is to obtain a similar description of maps without assuming
any topology on the spaces of continuous functions. For instance, in general we will
not consider the topological spaces to be compact.

Our approach here could be somehow qualified as the opposite to the one taken
when studying linear isometries, yet the results we obtain are similar. Namely, an
isometry T : C(X) → C(Y ) is a map where the image of each f ∈ C(X) satisfies
supy∈Y |(Tf)(y)| = supx∈X |(f)(x)|. In our case, the maps T : C(X) → C(Y ) we
will study are not continuous in principle, and satisfy that there exists M > 0 such
that

inf
y∈Y

(Tf)(y)6=0

|(Tf)(y)| ≥M inf
x∈X
f(x)6=0

|f(x)| .
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As we will see, the behavior of these maps will depend very much on the structure
of X . In particular, we obtain that they can be described as weighted composition
when the space X is N-compact, but cannot when we assume some connectedness
on X , as is shown in the example at the end of this introduction.

The results given in this paper do not apply in general to spaces of real- or
complex-valued bounded continuous functions. For instance, it is well-known (see
[6, Theorems 6.2.10 and 6.2.12]) that if a topological space X is strongly zerodimen-
sional, its Stone-Čech compactification βX is zerodimensional (that is, a nonempty
T1-space with a base consisting of open-and-closed sets). Consequently Lemma 2.3
is not true in general in the realm of spaces of bounded functions, making false the
rest of the statements for this kind of space.

Nevertheless all these results hold for spaces of bounded continuous functions
taking values not in R or C, but in a field K endowed with a nonarchimedean
valuation under which it is not locally compact. Once again, the fact that the field
is not locally compact makes a strong difference with respect to the real or complex
cases (see [1] and [7]), providing a richer result than obtained when dealing with R
or C.

Unless otherwise stated, the topological space X will be N-compact, that is,
homeomorphic to a closed subspace of some power of N, and Y will be completely
regular. In the case when K is a nonarchimedean field (see Situation 2 below and
the comment after it), Y will be also zerodimensional. Throughout Sections 2 and
3, we will assume that we are in one of the following two situations:

• Situation 1. K = R or C. In this case B(X) will denote C(X), that is, the
space of all continuous functions f : X → K. Also B(Y ) = C(Y ).

• Situation 2. K is a commutative complete field endowed with a nontrivial
nonarchimedean valuation, and it is assumed not to be locally compact. In
this case B(X) will denote C∗(X), that is, the space of all bounded continuous
functions f : X → K. Also B(Y ) = C∗(Y ).

Here we mention the fact that, when X and Y are compact and zerodimensional,
the results are valid (with similar proofs) for every commutative complete field
endowed with a nontrivial valuation, even if it is locally compact. This will be
used in Section 4 when we give a general version of the Banach-Stone theorem for
infimum preserving linear maps.

For a clopen (that is, closed and open) subset U of X , ξU will stand for the
characteristic function on U , which is continuous. Given a map f from X into K,
the cozero set of f will be the set c(f) := {x ∈ X : f(x) 6= 0}. Moreover for any
f ∈ B(X), f 6= 0, we denote by val (f) the set {|f(x)| : x ∈ c(f)}; as for the function
constantly equal to 0, val (0) := {0}. Finally given a map T : B(X) → B(Y ), we
define Y0 :=

⋃
f∈B(X) c(Tf).

Definition 1.1. A map T : B(X) → B(Y ) is said to be weakly separating if
c(Tf)∩ c(Tg) = ∅ whenever f, g ∈ B(X) and there exist disjoint clopen sets U and
V such that c(f) ⊂ U and c(g) ⊂ V .

Definition 1.2. A linear map T : B(X) → B(Y ) is said to be a weighted com-
position map if there exist a continuous map h : Y → X with dense range and
a ∈ B(Y ) such that (Tf)(y) = a(y)f(h(y)) for every f ∈ B(X) and every y ∈ Y .
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Definition 1.3. A linear map T : B(X) → B(Y ) is said to be a Banach-Stone
map if there exist a homeomorphism h from Y onto X and a : Y → K continuous,
|a| ≡ 1, such that (Tf)(y) = a(y)f(h(y)) for every f ∈ B(X) and every y ∈ Y .

Definition 1.4. A linear map T : B(X)→ B(Y ) is said to be infrabounded-below
if there exists M > 0 such that inf val (Tf) ≥M inf val (f) for every f ∈ B(X).

Also for an infrabounded-below map T , we denote by infra(T ) the supremum of
all M satisfying the inequality given in Definition 1.4.

We start by showing that in general not every infrabounded-below map can be
represented as a weighted composition, not even when it is bijective and continuous.

Example. Assume that K = R, and that X = Y is a compact Hausdorff space
which contains a connected open set Z with more than one point. Take x0 ∈ Z.
It is clear that C(X) can be expressed as the direct sum C(X) = A ⊕M0, where
A := {αξX : α ∈ R} and M0 := {f ∈ C(X) : f(x0) = 0}. Consider g0 ∈ C(X) such
that 1/2 ≤ g0 ≤ 1, g0(x0) = 1/2, and g0 ≡ 1 outside Z. Now define TξX := ξX ,
and Tf0 := f0g0 for every f0 ∈M0, and extend it by linearity to a map T : C(X)→
C(X). It is clear that T is bijective, and it is continuous if we endow C(X) with
the sup norm. It is also easy to see that T cannot be described as a weighted
composition map. Now let us check that it is infrabounded-below.

Take f ∈ C(X). Then f = αξX + f0, where α ∈ R and f0 ∈ M0. Without
loss of generality, we assume that α > 0. Now notice that, for every x /∈ Z,
(Tf)(x) = f(x). So we concentrate on the behaviour of f in Z.

First, if f0(x) ≥ 0 for every x ∈ Z, then it is easy to see that α = f(x0) ≤ |f(x)|
and α = (Tf)(x0) ≤ |(Tf)(x)| for every x ∈ Z. As a consequence, inf val (f) = α
if c(f) ⊂ Z, and inf val (f) = min{α, inf{|f(x)| : x /∈ Z, f(x) 6= 0}} otherwise.
Clearly it coincides with inf val (Tf).

On the other hand, if there are points in Z where f0 takes negative value, then
consider r := infx∈Z f0(x). It is clear that, since Z is connected and f0(x0) = 0, if
r ≤ −α, then there are points in Z where f takes values as close to 0 as we want.
Consequently, inf val (f) = 0 and inf val (Tf) ≥ inf val (f). Finally, if r > −α, for
every x ∈ Z, we have

|(Tf)(x)| = α+ f0(x)g0(x) ≥ α+ r = inf{|f(x)| : x ∈ Z}.

As a consequence it is easy to check that for every f ∈ C(X), inf val (Tf) ≥
inf val (f), and then T is infrabounded-below.

2. Weighted composition maps and infrabounded-below maps

Lemma 2.1. Let a linear map T : B(X)→ B(Y ) satisfy one of the two following
conditions:

(1) T is infrabounded-below.
(2) val (Tf) = {1} whenever val (f) = {1}, f ∈ B(X). In this case also assume

that K is nonarchimedean.
Then T is weakly separating and injective.

Proof. Since we are giving a unique proof assuming two possible conditions, we will
suppose that if T satisfies Condition 2 but it does not satisfy Condition 1, then
infra(T ) = +∞.

We will prove the result through the following two claims.
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Claim 1. If U and V are disjoint nonempty clopen subsets of X, then c(TξU ) ∩
c(TξV ) = ∅.

Suppose on the contrary that c(TξU ) ∩ c(TξV ) 6= ∅. Then there exists y ∈ Y
such that (TξU )(y) = α and (TξV )(y) = β, with αβ 6= 0. Clearly, if we assume
Condition 1, infra(T ) ≤ |α| , |β|. Notice also that if we assume Condition 2, then
|α| = 1 = |β|.

Suppose that |α| ≤ |β|. Take γ ∈ K, |γ| ≥ 1, such that

0 < |γα+ β| < min{1, infra(T )}.
Then we have that inf val (γξU +ξV ) = 1 and also val (γξU +ξV ) = {1} if we assume
Condition 2. However we have that |γα+ β| belongs to val (T (γξU + ξV )) which is
against our hypothesis. Consequently c(TξU ) ∩ c(TξV ) = ∅.

Claim 2. Suppose that U is a clopen subset of X, and that f ∈ B(X) satisfies
c(f) ⊂ U . Then c(Tf) ⊂ c(TξU ).

Although the idea to prove this claim is essentially the same when we deal with
archimedean or nonarchimedean fields, there are some basic differences between
them. Consequently, we split the proof of this claim into two cases.

Case 1. K = R or C. We know that each complex-valued continuous function
is a linear combination of two real-valued continuous functions, namely, its real
and its imaginary parts. In the same way, every real-valued continuous function is
a linear combination of its positive and its negative parts. Consequently, we can
assume that f ≥ 0. Now suppose that there exists a point y0 ∈ c(Tf) − c(TξU ).
Let r := |(Tf)(y0)|. Next take M > 0 such that M infra(T ) > r. It is clear that
inf val (MξU + f) ≥ M , and consequently inf val (MTξU + Tf) ≥ M infra(T ). But
this contradicts the fact that |M(TξU )(y0) + (Tf)(y0)| = r ∈ (0,M infra(T )). Then
the claim is proved in this first case.

Case 2. K is a nonarchimedean field. Take q ∈ K such that

sup
y∈Y
|(Tf)(y)| , sup

x∈X
|f(x)| < min{1, infra(T )} |q| .

Then we have that val (f + qξU ) = {|q|}. So we deduce that

inf val (T (f + qξU )) ≥ min{1, infra(T )} |q| .
Take y ∈ c(Tf). Since in any case 0 < |(Tf)(y)| < min{1, infra(T )} |q|, and
consequently |(Tf + qT ξU )(y)| 6= |(Tf)(y)|, then we have that |q(TξU )(y)| 6= 0,
which proves that c(Tf) ⊂ c(TξU ) also in this second case.

Now it follows immediately from Claims 1 and 2 that T is weakly separating.
Finally we are going to see that T is injective. Suppose that f ∈ B(X), f 6= 0.

Take a clopen subset A of X such that a := inf val (fξA) > 0. By hypothe-
sis, there exists y ∈ Y such that |(T (fξA))(y)| ≥ min{1, infra(T )}a. Since T is
weakly separating, c(T (fξA)) ∩ c(T (fξX−A)) = ∅, and we deduce that |(Tf)(y)| =
|(T (fξA))(y)| ≥ min{1, infra(T )}a. This implies that Tf 6= 0.

As a consequence of the previous lemma, we can apply in our setting all results
concerning weakly separating injective maps. In particular, as in [1], if β0X stands
for the Banaschewski compactification of X , we can define a continuous map h :
Y0 → β0X which has dense range. Notice that in [1], all results are given in the
nonarchimedean context. Exactly the same proofs, with just the natural changes,
are valid when K = R or C. We use β0X because we need a zerodimensional
compactification, and this is not always possible taking βX .
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The following lemma, which appears in [1], will be useful in the next results.

Lemma 2.2. Suppose that T : B(X)→ B(Y ) is a weakly separating additive map.
If y belongs to Y0 and f ∈ B(X) satisfies (Tf)(y) 6= 0, then h(y) belongs to the
closure of c(f) in β0X.

Lemma 2.3. Let T : B(X) → B(Y ) be an infrabounded-below map. Then, for
every y ∈ Y0, h(y) belongs to X.

Proof. Assume on the contrary that for some y0 ∈ Y0, h(y0) /∈ X . Then there
exists a sequence (Un) of clopen neighborhoods of h(y0) in β0X such that Un+1 is
strictly contained in Un for every n ∈ N, U1 = β0X , and X ∩

⋂∞
n=1 Un = ∅. For

each n ∈ N, define Vn := Un − Un+1.
On the other hand, since y0 ∈ Y0, we have that there exists f0 ∈ B(X) such that

(Tf0)(y0) 6= 0. Also, by Claim 2 in Lemma 2.1, we have that γ0 := (TξX)(y0) 6= 0.
We separate the archimedean case and the nonarchimedean one.
Case 1. K = R or C. Here B(X) = C(X). Define g1 :=

∑∞
n=1 nξVn ∈ C(X).

Suppose that (Tg1)(y0) = α 6= 0, and take n0 ∈ N such that |α| ≤ n0infra(T ).
It is clear that, if g2 :=

∑n0
n=1 nξVn , then h(y0) does not belong to the closure of

c(g2) in β0X , and consequently, by Lemma 2.2, (Tg2)(y0) = 0. This implies that
(T (g1 − g2))(y0) = α. Then we are in the situation that

inf val (T (g1 − g2)) ≤ |α| < (n0 + 1)infra(T ) = infra(T ) inf val (g1 − g2).

Since this cannot happen, we conclude that (Tg1)(y0) = 0.
But notice that a similar reasoning would lead to the fact that (T (g1+ξX))(y0) =

(T
∑∞
n=1(n+ 1)ξVn)(y0) = 0. As a consequence, (TξX)(y0) = 0, which is a contra-

diction.
Case 2. K is a nonarchimedean field. Here B(X) = C∗(X). Now, since K is

not locally compact, we can take a sequence (αn) in K such that 1/2 ≤ |αn| ≤ 1,
|αn − 1| ≥ 1/2 for each n ∈ N, and 1 − 1/(n+ 1) ≤ |αn − αm| for every n,m ∈ N,
n > m.

Now define g0 := ξX , g1 :=
∑∞

n=1 αnξVn , and g2 := g0− g1. It is easy to see that
these three functions belong to C∗(X). Now it is clear that, since T is linear, we
have (Tg1)(y0) 6= 0 or (Tg2)(y0) 6= 0. Also, since K is nonarchimedean, it is clear
that there exist i ∈ {1, 2} with |γ0| = |(Tg0)(y0)| ≤ |(Tgi)(y0)|. Since the proof will
work in the same way otherwise, we assume that i = 1. Then (Tg1)(y0) = γ1, with
|γ1| ≥ |γ0|. Next take δ ∈ K, |δ| ≤ 1, such that 0 < |δγ1 + γ0| < infra(T )/2.

Let us see that there exists at most one n ∈ N with |δαn − 1| < 1/2. This is
clear if |δ| < 1. So suppose that |δ| = 1 and that we can take n1, n2 ∈ N, n1 6= n2,
such that the distances from δαn1 and δαn2 to 1 are strictly less than 1/2. As a
consequence, |αn1 − αn2 | = |δαn1 − δαn2 | < 1/2, contradicting the way we have
chosen the sequence (αn). If it exists, let n0 ∈ N such that |δαn0 − 1| < 1/2. It is
clear that h(y0) does not belong to the closure of Vn0 in β0X , and consequently, if we
define k0 := g0−g0ξVn0

, and k1 := g1−g1ξVn0
, then by Lemma 2.2 (Tk0)(y0) = γ0,

and (Tk1)(y0) = γ1.
We deduce that if x ∈ Vn0 , then (k0 − δk1)(x) = 0. On the other hand, if

x ∈ X − Vn0 , then there exists n ∈ N− {n0} such that x ∈ Vn, and in this way,

|(k0 − δk1)(x)| = |g0(x)− δg1(x)|
= |g0(x)| |1− δαn|
≥ 1/2.
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We conclude that inf val (k0 + δk1) ≥ 1/2, and by hypothesis, that

inf val (Tk0 + δTk1) ≥ infra(T )/2.

But notice that |(Tk0)(y0) + δ(Tk1)(y0)| = |γ0 + δγ1| belongs to (0, infra(T )/2).
This contradiction implies that h(y0) belongs to X .

Consequently the lemma is proved.

Lemma 2.4. Let T : B(X)→ B(Y ) be an infrabounded-below map. If y ∈ Y0 and
f ∈ B(X) satisfy f(h(y)) = 0, then (Tf)(y) = 0.

Proof. Consider y0 ∈ Y0 and f0 ∈ B(X) such that f0(h(y0)) = 0. We are going to
prove that (Tf0)(y0) = 0. Suppose that this is not the case, but (Tf0)(y0) = α 6= 0.

Once again, at this point the archimedean and the nonarchimedean cases deserve
separate attention.

Case 1. K = R or C. First notice that, by Claim 2 in Lemma 2.1, we have
c(Tf0) ⊂ c(TξX). Also, multiplying by a constant if necessary, we can assume that
α = (TξX)(y0)/2. Now take an open neighborhood U of h(y0) such that |f0(x)| <
M for every x ∈ U , where M > 0 satisfies (1 − M)infra(T ) > |(TξX)(y0)/2|.
Consider g0 ∈ C(X) such that g0 ≡ 1 on a neighborhood of h(y0), 0 ≤ g0 ≤ 1,
and g0(X − U) ≡ 0. It is clear that, since T is weakly separating and f0 =
f0g0 + f0(1 − g0), then by Lemma 2.2, (Tf0g0)(y0) = α. It is also clear that
inf val (ξX − f0g0) ≥ 1−M , and consequently

inf val (TξX − Tf0g0) ≥ (1−M)infra(T ),

which is in contradiction with the fact that

|(TξX − Tf0g0)(y0)| = |α| < (1−M)infra(T ).

Case 2. K is a nonarchimedean field. As above, we have c(Tf0) ⊂ c(TξX).
In the same way, multiplying by a constant if necessary, we can assume that
0 < |α− (TξX)(y0)| < infra(T ). Now take the set U0 := {x ∈ X : |f0(x)| < 1},
which is clopen. By Lemma 2.2, we see that (T (f0ξX−U0))(y0) = 0, and conse-
quently (T (f0ξU0))(y0) = α. We easily check that val (f0ξU0 + ξX) = {1}, and
consequently inf val (T (f0ξU0 + ξX)) ≥ infra(T ). But, on the other hand, we know
that |(T (f0ξU0 + ξX))(y0)| ∈ (0, infra(T )), which is a contradiction.

Consequently, in both cases we conclude that (Tf0)(y0) = 0.

Lemma 2.5. Let T : B(X)→ B(Y ) be an infrabounded-below map. Then c(TξX)
is clopen.

Proof. The proof is immediate once we notice that c(TξX) = {y ∈ Y : |(TξX)(y)| ≥
infra(T )/2} = {y ∈ Y : |(TξX)(y)| > infra(T )/2}.

Theorem 2.6. Let T : B(X) → B(Y ) be an infrabounded-below map. Then it is
a weighted composition map.

Proof. Define a := TξX ∈ B(Y ). Let y0 ∈ Y0. By Lemma 2.3, we know that
h(y0) ∈ X . Now take f ∈ B(X), and suppose that f(h(y0)) 6= 0. Clearly, if we
define k ∈ B(X) as k(x) := f(x)/f(h(y0)) for x ∈ X , we have k(h(y0)) = ξX(h(y0))
and by Lemma 2.4, (Tk)(y0) = a(y0), that is, (Tf)(y0) = a(y0)f(h(y0)). On the
other hand, also by Lemma 2.4, it is clear that if f(h(y0)) = 0, then (Tf)(y0) = 0
and (Tf)(y0) = a(y0)f(h(y0)) holds too. But this can be stated not only for
points y ∈ Y0. In particular, if x0 is any point in X by defining h(y) := x0 for
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every y ∈ Y − Y0, we also have (Tf)(y) = a(y)f(h(y)) for every y ∈ Y and every
f ∈ B(X), because a ≡ 0 on Y − Y0.

On the other hand, it is easy to see, by using Claim 2 of Lemma 2.1, that
Y0 = c(TξX), and by Lemma 2.5, it is clopen. This implies that the new h defined
on the whole Y is continuous.

Finally the fact that h has dense range in X was mentioned after Lemma 2.1.

3. The surjective case

In this section we also assume that the space Y is N-compact. On the other hand,
recall that a bijective additive map T : B(X) → B(Y ) is said to be separating if
(Tf)(Tg) ≡ 0 whenever fg ≡ 0 (f, g ∈ B(X)), and that it is said to be biseparating
if both T and T−1 are separating.

Theorem 3.1. Let T : B(X)→ B(Y ) be a surjective and infrabounded-below map.
Then it is a weighted composition map, where h is a (surjective) homeomorphism
and |a(y)| ≥ infra(T ) for every y ∈ Y .

Proof. By Theorem 2.6, there exist a ∈ B(Y ) and a continuous map h : Y → X of
dense range such that (Tf)(y) = a(y)f(h(y)) for every y ∈ Y and every f ∈ B(X).
Also, as we saw in the proof of Theorem 2.6, c(a) = Y0, and consequently, in our
case, c(a) = Y , that is, a(y) 6= 0 for every y ∈ Y . On the other hand, since a = TξX
and T is infrabounded-below, we deduce that |a(y)| ≥ infra(T ) for every y ∈ Y .

Next, T is surjective, and then, by Lemma 2.1, it is bijective. Also it is easy to
see that T is separating (and linear). Finally, taking into account that X is zerodi-
mensional, when K = R or C, we know by [3, Theorem 17] that T is biseparating.
Also, since both X and Y are realcompact, we conclude by [2, Proposition 3] that
h is a surjective homeomorphism. When K is nonarchimedean, the same result
follows from [1, Theorems 3.1 and 3.2].

Theorem 3.2. Let T : B(X)→ B(Y ) be surjective and linear. Then the following
statements are equivalent:

(1) T is a Banach-Stone map.
(2) inf val (f) = inf val (Tf) for every f ∈ B(X).
Also, if K is nonarchimedean, both statements are equivalent to
(3) If f ∈ B(X), then val (Tf) = {1} whenever val (f) = {1}.

Proof. (1)⇒ (2) and (1)⇒ (3) are easy.
As for (2)⇒ (1), by Theorem 3.1, we know that Tf = a·f◦h for every f ∈ B(X),

where h is a (surjective) homeomorphism and |a(y)| ≥ infra(T ) = 1 for every y ∈ Y .
We are going to see that |a(y)| = 1 for every y ∈ Y . Suppose that there is

y0 ∈ Y such that |a(y0)| > 1. Then take ε > 0 and a clopen neighborhood U of
y0 such that |a(y)| > 1 + ε for every y ∈ U . Define f0 := T−1ξU . By applying the
hypothesis it is clear that there exists a point y1 ∈ U such that |f0(h(y1))| ≥ 1.
Now

1 = |ξU (y1)| = |(Tf0)(y1)| = |a(y0)f0(h(y1))| ≥ 1 + ε,

which is absurd. We conclude that |a(y)| = 1 for every y ∈ Y and we are done.
Finally we are going to see (3) ⇒ (1). First, we have, by Lemma 2.1, that T

is weakly separating and bijective. In [1, Theorem 3.1], it is proved that, when K
is nonarchimedean (even if it is locally compact), every bijective weakly separating
linear map is biseparating. Now, using [1, Theorem 3.2], there exist a ∈ B(Y ) and
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a (surjective) homeomorphism h : Y → X such that, for every f ∈ B(X) and every
y ∈ Y , (Tf)(y) = a(y)f(h(y)). Also a = TξX , and consequently v(a) = {1}. Now,
since Y0 = c(a) = Y , we conclude that T is a Banach-Stone map.

Remarks. 1. Recall that in classical results concerning the Banach-Stone theorem,
(local) compactness on the topological spaces X and Y is assumed. Notice that
this is not the case in Theorem 3.2, where we do not call for (local) compactness
on the underlying spaces.

2. In general, we have to assume N-compactness of our spaces X and Y . For
instance, consider a pseudocompact not N-compact space X (e.g., the set of ordinal
numbers less than the first uncountable ordinal number, [7, 5.12]) and let Y be its
N-compactification, which is compact (see for instance [8, page 44]). It is easy to
see that the canonical isomorphism T : C(X) → C(Y ), sending each f ∈ C(X)
into its continuous extension to Y , cannot be described as a weighted composition
map.

3. In the proof of Theorem 3.2 ((3)⇒ (1)), when K is not locally compact, and
X and Y are compact, the result also holds applying [3, Corollary 21] instead of [1,
Theorem 3.2]. Exactly the same comment applies to Theorem 3.1.

4. Banach-Stone maps and preservation of the infimum

Unlike the rest of the paper, in this section we assume that we are in one of the
following situations:
• Situation 1. K = R or C. In this case X and Y will denote Hausdorff

compact spaces (not necessarily zerodimensional) and B(X) = C(X), B(Y ) =
C(Y ).
• Situation 2. K is a commutative complete field endowed with a nontrivial

nonarchimedean valuation. If K is not locally compact, then X and Y will
denote N-compact spaces, and B(X) = C∗(X), B(Y ) = C∗(Y ). If K is locally
compact, then X and Y will denote compact and zerodimensional spaces, and
B(X) = C(X), B(Y ) = C(Y ).

Now B(X) and B(Y ) become Banach spaces when endowed with the sup norm
‖·‖∞.

At this point, it is worth mentioning that when we replace the real or complex
field for a nonarchimedean one, the Banach-Stone theorem does not hold. Given
a zerodimensional compact space X , when we study linear isometries from the
space C(X) of K-valued continuous functions onto itself, not only may they not be
weighted composition maps ([5, 4]), but the set of linear surjective isometries which
are not of this kind is dense in the space of all linear isometries ([4]).

Theorem 4.1. Let T : B(X)→ B(Y ) be surjective and linear. Then the following
statements are equivalent:

(1) T is a Banach-Stone map.
(2) infx∈X |f(x)| = infy∈Y |(Tf)(y)| for every f ∈ B(X).

Proof. (1)⇒ (2) is easy.
Next we prove (2) ⇒ (1). Suppose that ‖f‖∞ = 1. Then, for every α ∈ K,

|α| < 1, infx∈X |(ξX − αf)(x)| > 0, and consequently infy∈Y |(TξX − αTf)(y)| > 0.
This implies that, for every y ∈ Y , |α| |(Tf)(y)| 6= |(TξX)(y)|. Since this happens
for every α ∈ K, |α| < 1, we conclude that |(Tf)(y)| ≤ |(TξX)(y)| for every y ∈ Y .
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On the other hand, since |(TξX)(y)| ≥ 1 for every y ∈ Y , we can define a new
surjective linear map S : B(X) → B(Y ) as Sf := Tf/T ξX, f ∈ B(X). Now,
from what we saw above, we have that ‖Sf‖∞ ≤ 1 whenever ‖f‖∞ = 1. Let
us see that S is an isometry, that is, that ‖Sf‖∞ = 1 for such an f . If this is
not the case, there exists M ∈ (0, 1) such that |(Sf)(y)| ≤ M for every y ∈ Y .
Then |(Tf)(y)| ≤ M |(TξX)(y)| for every y ∈ Y . It is easy to see that, whenever
α ∈ K, |α| < 1/M , then for every y ∈ Y , |(TξX)(y)− α(Tf)(y)| ≥ |(TξX)(y)| −
|α| |(Tf)(y)| ≥ 1 − |α|M . Consequently, in this case infy∈Y |(TξX − αTf)(y)| >
0, that is, infx∈X |(ξX − αf)(x)| > 0. But notice that this is not true, because
‖f‖∞ = 1. We deduce that S is an isometry.

Now suppose that K is nonarchimedean. We are going to prove that val (Sf) =
{1} whenever val (f) = {1}, f ∈ B(X). Suppose that there exists a point y0 ∈ Y
such that r := |(Sf)(y0)| ∈ (0, 1). Then |(Tf)(y0)| = r |(TξX)(y0)|, and we can
take α ∈ K, |α| = r, such that α(TξX)(y0) = (Tf)(y0). Then it is clear that
infy∈Y |(αTξX − Tf)(y)| = 0, but it is easy to see that infx∈X |(αξX + f)(x)| ≥ r,
which contradicts our hypothesis. As a consequence, val (Sf) ⊂ [1,+∞) and, since
S is an isometry, we conclude that val (Sf) = {1}.

So applying the Banach-Stone theorem in the case K = R or C, and applying
Theorem 3.2 (see also Remark 3 after it) when K is nonarchimedean, we conclude
that S is a Banach-Stone map, that is, there exists a homeomorphism h from Y
onto X and a function a ∈ B(Y ), |a| ≡ 1, such that (Sf)(y) = a(y)f(h(y)) for
every f ∈ B(X) and every y ∈ Y . This implies that, for every y ∈ Y and every
f ∈ B(X), (Tf)(y) = (TξX)(y)a(y)f(h(y)). Also, we know that |(TξX)(y)| ≥ 1 for
every y ∈ Y . Consequently, if we want to prove that T is a Banach-Stone map, it
is enough to see that |(TξX)(y)| ≤ 1 for every y ∈ Y .

Notice first that, for every g ∈ B(Y ), we have T−1g = g ◦h−1/(TξX ·a)◦h−1. In
particular, if we take g := ξY ∈ B(Y ), this implies that T−1ξY = 1/(TξX ·a) ◦h−1.
Then it is clear that if ‖TξX‖∞ > 1, then infx∈X

∣∣(T−1ξY )(x)
∣∣ < infy∈Y |ξY (y)|,

which goes against our hypothesis. Consequently TξX ≡ 1 and we are done.
We conclude that T is a Banach-Stone map.

Remark. In all the results given in this paper the assumption of N-compactness on
the space X plays a relevant role. Also, by the example given before Section 2,
we conclude that we cannot expect to describe any infrabounded-below map as a
weighted composition whenever X contains an open connected subset with more
than one point. We end the paper with the following more general question.

Problem. Assuming that K = R or C, characterize all completely regular spaces
X such that every infrabounded-below map defined on C(X) can be described as
a weighted composition map.

I would like to thank Professor Peter Nyikos for some useful comments concerning
strong zerodimensionality and N-compactness. I would like to thank also the referee
for some suggestions which improved this paper.
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