On perfectly meager sets
HTML articles powered by AMS MathViewer
- by Tomek Bartoszynski
- Proc. Amer. Math. Soc. 130 (2002), 1189-1195
- DOI: https://doi.org/10.1090/S0002-9939-01-06138-X
- Published electronically: October 1, 2001
- PDF | Request permission
Abstract:
We show that it is consistent that the product of perfectly meager sets is perfectly meager.References
- Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995. On the structure of the real line. MR 1350295, DOI 10.1201/9781439863466
- H. Judah and S. Shelah, Killing Luzin and Sierpiński sets, Proc. Amer. Math. Soc. 120 (1994), no. 3, 917–920. MR 1164145, DOI 10.1090/S0002-9939-1994-1164145-0
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Edward Marczewski (Szpilrajn). Probleme 68. Fundamenta Mathematicae, 25:579, 1935.
- Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624
- Janusz Pawlikowski, Products of perfectly meager sets and Lusin’s function, Proc. Amer. Math. Soc. 107 (1989), no. 3, 811–815. MR 984810, DOI 10.1090/S0002-9939-1989-0984810-3
- Ireneusz Recław, Products of perfectly meagre sets, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1029–1031. MR 1059635, DOI 10.1090/S0002-9939-1991-1059635-2
- Waclaw Sierpiński. Sur une probleme de M.Kuratowski concernant la propriete de Baire des ensambles. Fundamenta Mathematicae, 22:262–266, 1934.
- S. M. Srivastava, A course on Borel sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag, New York, 1998. MR 1619545, DOI 10.1007/978-3-642-85473-6
- Piotr Zakrzewski. Universally meager sets. to appear in Proceedings of the American Mathematical Society.
Bibliographic Information
- Tomek Bartoszynski
- Affiliation: Department of Mathematics and Computer Science, Boise State University, Boise, Idaho 83725
- Email: tomek@math.boisestate.edu
- Received by editor(s): May 5, 2000
- Received by editor(s) in revised form: October 24, 2000
- Published electronically: October 1, 2001
- Additional Notes: The author was partially supported by NSF grant DMS 99271
- Communicated by: Alan Dow
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1189-1195
- MSC (1991): Primary 03E17
- DOI: https://doi.org/10.1090/S0002-9939-01-06138-X
- MathSciNet review: 1873796