Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Extinction and decay estimates for viscous Hamilton-Jacobi equations in ${\mathbb {R}}^N$
HTML articles powered by AMS MathViewer

by Said Benachour, Philippe Laurençot and Didier Schmitt
Proc. Amer. Math. Soc. 130 (2002), 1103-1111
DOI: https://doi.org/10.1090/S0002-9939-01-06140-8
Published electronically: October 1, 2001

Abstract:

We consider non-negative and integrable classical solutions to the Cauchy problem $u_t-\Delta u+\vert \nabla u\vert ^p=0$ when $p\in (0,+\infty )$. For $p\in (0,N/(N+1))$ we prove that any such solution vanishes identically after a finite time. For higher values of $p$ temporal decay estimates are obtained.
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35B40, 35B05, 35K55
  • Retrieve articles in all journals with MSC (1991): 35B40, 35B05, 35K55
Bibliographic Information
  • Said Benachour
  • Affiliation: Institut Elie Cartan - Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
  • Email: benachou@iecn.u-nancy.fr
  • Philippe Laurençot
  • Affiliation: Institut Elie Cartan - Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
  • Address at time of publication: Mathématiques pour l’Industrie et la Physique, UNR CNRS 5640, Université Paul Sabatier-Toulouse 3, 118, route de Narbonne, F-31062 Toulouse Cedex 4, France
  • Email: laurenco@iecn.u-nancy.fr, laurencot@mip.ups-tlse.fr
  • Didier Schmitt
  • Affiliation: Institut Elie Cartan - Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
  • Email: dschmitt@iecn.u-nancy.fr
  • Received by editor(s): March 23, 2000
  • Received by editor(s) in revised form: October 12, 2000
  • Published electronically: October 1, 2001
  • Communicated by: David S. Tartakoff
  • © Copyright 2001 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 130 (2002), 1103-1111
  • MSC (1991): Primary 35B40, 35B05, 35K55
  • DOI: https://doi.org/10.1090/S0002-9939-01-06140-8
  • MathSciNet review: 1873785