Extinction and decay estimates for viscous Hamilton-Jacobi equations in ${\mathbb {R}}^N$
HTML articles powered by AMS MathViewer
- by Said Benachour, Philippe Laurençot and Didier Schmitt
- Proc. Amer. Math. Soc. 130 (2002), 1103-1111
- DOI: https://doi.org/10.1090/S0002-9939-01-06140-8
- Published electronically: October 1, 2001
- PDF | Request permission
Abstract:
We consider non-negative and integrable classical solutions to the Cauchy problem $u_t-\Delta u+\vert \nabla u\vert ^p=0$ when $p\in (0,+\infty )$. For $p\in (0,N/(N+1))$ we prove that any such solution vanishes identically after a finite time. For higher values of $p$ temporal decay estimates are obtained.References
- Matania Ben-Artzi and Herbert Koch, Decay of mass for a semilinear parabolic equation, Comm. Partial Differential Equations 24 (1999), no. 5-6, 869–881. MR 1680909, DOI 10.1080/03605309908821450
- Said Benachour and Philippe Laurençot, Global solutions to viscous Hamilton-Jacobi equations with irregular initial data, Comm. Partial Differential Equations 24 (1999), no. 11-12, 1999–2021. MR 1720778, DOI 10.1080/03605309908821492
- S. Benachour and Ph. Laurençot, Very singular solutions to a nonlinear parabolic equation with absorption. I. Existence, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 27–44.
- S. Benachour, Ph. Laurençot and D. Schmitt, in preparation.
- S. Benachour, B. Roynette, and P. Vallois, Asymptotic estimates of solutions of $u_t-{1\over 2}\Delta u=-|\nabla u|$ in $\textbf {R}_+\times \textbf {R}^d,\ d\geq 2$, J. Funct. Anal. 144 (1997), no. 2, 301–324. MR 1432587, DOI 10.1006/jfan.1996.2984
- Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
- Lawrence C. Evans, Regularity properties for the heat equation subject to nonlinear boundary constraints, Nonlinear Anal. 1 (1976/77), no. 6, 593–602. MR 605331, DOI 10.1016/0362-546X(77)90020-7
- Lawrence C. Evans and Barry F. Knerr, Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities, Illinois J. Math. 23 (1979), no. 1, 153–166. MR 516577
- Victor A. Galaktionov and Juan L. Vázquez, Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach, J. Funct. Anal. 100 (1991), no. 2, 435–462. MR 1125235, DOI 10.1016/0022-1236(91)90120-T
- Victor A. Galaktionov and Juan L. Vazquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), no. 1, 1–67. MR 1423231, DOI 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.3.CO;2-R
- B.H. Gilding, M. Guedda and R. Kersner, The Cauchy problem for $u_t = \Delta u + \vert \nabla u\vert ^q$, prépublication LAMFA 28, Université de Picardie, 1998.
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- A.S. Kalashnikov, The propagations of disturbances in problems of non-linear heat conduction with absorption, Comput. Math. Math. Phys. 14 (1974), 70–85.
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
Bibliographic Information
- Said Benachour
- Affiliation: Institut Elie Cartan - Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
- Email: benachou@iecn.u-nancy.fr
- Philippe Laurençot
- Affiliation: Institut Elie Cartan - Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
- Address at time of publication: Mathématiques pour l’Industrie et la Physique, UNR CNRS 5640, Université Paul Sabatier-Toulouse 3, 118, route de Narbonne, F-31062 Toulouse Cedex 4, France
- Email: laurenco@iecn.u-nancy.fr, laurencot@mip.ups-tlse.fr
- Didier Schmitt
- Affiliation: Institut Elie Cartan - Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
- Email: dschmitt@iecn.u-nancy.fr
- Received by editor(s): March 23, 2000
- Received by editor(s) in revised form: October 12, 2000
- Published electronically: October 1, 2001
- Communicated by: David S. Tartakoff
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1103-1111
- MSC (1991): Primary 35B40, 35B05, 35K55
- DOI: https://doi.org/10.1090/S0002-9939-01-06140-8
- MathSciNet review: 1873785