Almost positive curvature on the Gromoll-Meyer 7-sphere
HTML articles powered by AMS MathViewer
- by J.-H. Eschenburg
- Proc. Amer. Math. Soc. 130 (2002), 1165-1167
- DOI: https://doi.org/10.1090/S0002-9939-01-06151-2
- Published electronically: September 19, 2001
- PDF | Request permission
Abstract:
D. Gromoll and W. Meyer have represented a certain exotic 7-sphere $M$ as a biquotient of the compact Lie group $Sp(2)$. Thus any invariant normal homogeneous metric on $Sp(2)$ induces a metric of nonnegative sectional curvature on $M$. We show that the simplest such metrics (except the bi-invariant one) induce metrics which have in fact strictly positive curvature outside a subset of $M$ with measure zero.References
- Jost-Hinrich Eschenburg, Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie [Series of the Mathematical Institute of the University of Münster, Series 2], vol. 32, Universität Münster, Mathematisches Institut, Münster, 1984 (German). MR 758252
- J.-H. Eschenburg, Inhomogeneous spaces of positive curvature, Differential Geom. Appl. 2 (1992), no. 2, 123–132. MR 1245552, DOI 10.1016/0926-2245(92)90029-M
- Detlef Gromoll and Wolfgang Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. (2) 100 (1974), 401–406. MR 375151, DOI 10.2307/1971078
- Peter Petersen and Frederick Wilhelm, Examples of Riemannian manifolds with positive curvature almost everywhere, Geom. Topol. 3 (1999), 331–367. MR 1714915, DOI 10.2140/gt.1999.3.331
- F. Wilhelm: An exotic sphere with positive curvature almost everywhere, Preprint Riverside 1999
- B. Wilking: Manifolds with positive sectional curvature almost everywhere, preprint
Bibliographic Information
- J.-H. Eschenburg
- Affiliation: Institut für Mathematik, Universität Augsburg, D-86135 Augsburg, Germany
- Email: eschenburg@math.uni-augsburg.de
- Received by editor(s): September 28, 2000
- Received by editor(s) in revised form: October 23, 2000
- Published electronically: September 19, 2001
- Communicated by: Wolfgang Ziller
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1165-1167
- MSC (2000): Primary 53C20, 53C30; Secondary 57S25, 57R60
- DOI: https://doi.org/10.1090/S0002-9939-01-06151-2
- MathSciNet review: 1873792