On the relation between the A-polynomial and the Jones polynomial
HTML articles powered by AMS MathViewer
- by Răzvan Gelca
- Proc. Amer. Math. Soc. 130 (2002), 1235-1241
- DOI: https://doi.org/10.1090/S0002-9939-01-06157-3
- Published electronically: September 14, 2001
- PDF | Request permission
Abstract:
This paper shows that the noncommutative generalization of the A-polynomial of a knot, defined using Kauffman bracket skein modules, together with finitely many colored Jones polynomials, determines the remaining colored Jones polynomials of the knot. It also shows that under certain conditions, satisfied for example by the unknot and the trefoil knot, the noncommutative generalization of the A-polynomial determines all colored Jones polynomials of the knot.References
- C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883–927. MR 1362791, DOI 10.1016/0040-9383(94)00051-4
- Doug Bullock, Rings of $\textrm {SL}_2(\textbf {C})$-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997), no. 4, 521–542. MR 1600138, DOI 10.1007/s000140050032
- D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character varieties of $3$-manifolds, Invent. Math. 118 (1994), no. 1, 47–84. MR 1288467, DOI 10.1007/BF01231526
- Charles Frohman and Răzvan Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000), no. 10, 4877–4888. MR 1675190, DOI 10.1090/S0002-9947-00-02512-5
- C. Frohman, R. Gelca, W. Lofaro, The A-polynomial from the noncommutative viewpoint, preprint.
- R. Gelca, Noncommutative trigonometry and the A-polynomial of the trefoil knot, preprint.
- Jim Hoste and Józef H. Przytycki, The $(2,\infty )$-skein module of lens spaces; a generalization of the Jones polynomial, J. Knot Theory Ramifications 2 (1993), no. 3, 321–333. MR 1238877, DOI 10.1142/S0218216593000180
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- W. B. R. Lickorish, The skein method for three-manifold invariants, J. Knot Theory Ramifications 2 (1993), no. 2, 171–194. MR 1227009, DOI 10.1142/S0218216593000118
- Józef H. Przytycki and Adam S. Sikora, Skein algebra of a group, Knot theory (Warsaw, 1995) Banach Center Publ., vol. 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 297–306. MR 1634463
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR 1292673, DOI 10.1515/9783110883275
Bibliographic Information
- Răzvan Gelca
- Affiliation: Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas 79409 – and – Institute of Mathematics of the Romanian Academy, Bucharest, Romania
- Email: rgelca@math.ttu.edu
- Received by editor(s): May 9, 2000
- Received by editor(s) in revised form: October 23, 2000
- Published electronically: September 14, 2001
- Communicated by: Ronald A. Fintushel
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1235-1241
- MSC (1991): Primary 57M25, 58B30, 46L87
- DOI: https://doi.org/10.1090/S0002-9939-01-06157-3
- MathSciNet review: 1873802