On the horocyclic coordinate for the Teichmüller space of once punctured tori
HTML articles powered by AMS MathViewer
- by Hideki Miyachi PDF
- Proc. Amer. Math. Soc. 130 (2002), 1019-1029
Abstract:
This paper deals with analytic and geometric properties of the Maskit embedding of the Teichmüller space of once punctured tori. We show that the image of this embedding has an inward-pointing cusp and study the boundary behavior of conformal automorphisms. These results are proved using Y.N. Minsky’s Pivot Theorem.References
- Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481, DOI 10.1007/978-4-431-68174-8
- Linda Keen and Caroline Series, Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), no. 4, 719–749. MR 1241870, DOI 10.1016/0040-9383(93)90048-Z
- Linda Keen, Bernard Maskit, and Caroline Series, Geometric finiteness and uniqueness for Kleinian groups with circle packing limit sets, J. Reine Angew. Math. 436 (1993), 209–219. MR 1207287
- Steven P. Kerckhoff and William P. Thurston, Noncontinuity of the action of the modular group at Bers’ boundary of Teichmüller space, Invent. Math. 100 (1990), no. 1, 25–47. MR 1037141, DOI 10.1007/BF01231179
- Irwin Kra, Nonvariational global coordinates for Teichmüller spaces, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 221–249. MR 955843, DOI 10.1007/978-1-4613-9611-6_{1}6
- Irwin Kra, Horocyclic coordinates for Riemann surfaces and moduli spaces. I. Teichmüller and Riemann spaces of Kleinian groups, J. Amer. Math. Soc. 3 (1990), no. 3, 499–578. MR 1049503, DOI 10.1090/S0894-0347-1990-1049503-1
- Bernard Maskit, Moduli of marked Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974), 773–777. MR 346149, DOI 10.1090/S0002-9904-1974-13600-1
- Bernard Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 381–386. MR 802500, DOI 10.5186/aasfm.1985.1042
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- Katsuhiko Matsuzaki and Masahiko Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR 1638795
- Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347, DOI 10.1515/9781400865178
- Yair N. Minsky, The classification of punctured-torus groups, Ann. of Math. (2) 149 (1999), no. 2, 559–626. MR 1689341, DOI 10.2307/120976
- H.Miyachi, Cusps in complex boundaries of one-dimensional Teichmüller space, submitted, (2000).
- Subhashis Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 927291
- C.Series Lectures on Pleating coordinates for once punctured tori, lecture notes on the conference (organized by Y.Komori) in Osaka City University in July 1998.
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- M.Wada, OPTi3.0, http://vivaldi.ics.nara-wu.ac.jp/ wada/OPTi/.
- D.J.Wright, The shape of the boundary of Maskit’s embedding of the Teichmüller space of once punctured tori, preprint (1988).
Additional Information
- Hideki Miyachi
- Affiliation: Department of Mathematics, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
- MR Author ID: 650573
- Email: miyaji@sci.osaka-cu.ac.jp
- Received by editor(s): May 25, 1999
- Received by editor(s) in revised form: September 25, 2000
- Published electronically: November 28, 2001
- Additional Notes: The author is partially supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists from April, 2000.
- Communicated by: Albert Baernstein II
- © Copyright 2001 Hideki Miyachi
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1019-1029
- MSC (2000): Primary 30F40, 32G15
- DOI: https://doi.org/10.1090/S0002-9939-01-06170-6
- MathSciNet review: 1873775
Dedicated: Dedicated to Professor Hiroki Sato on the occasion of his sixtieth birthday