A simple proof of Bailey’s very-well-poised ${}_{6}\psi _{6}$ summation
HTML articles powered by AMS MathViewer
- by Michael Schlosser
- Proc. Amer. Math. Soc. 130 (2002), 1113-1123
- DOI: https://doi.org/10.1090/S0002-9939-01-06175-5
- Published electronically: October 1, 2001
- PDF | Request permission
Abstract:
We give elementary derivations of some classical summation formulae for bilateral (basic) hypergeometric series. In particular, we apply Gauß’ $_2F_1$ summation and elementary series manipulations to give a simple proof of Dougall’s $_2H_2$ summation. Similarly, we apply Rogers’ nonterminating $_6\phi _5$ summation and elementary series manipulations to give a simple proof of Bailey’s very-well-poised $_6\psi _6$ summation. Our method of proof extends M. Jackson’s first elementary proof of Ramanujan’s $_1\psi _1$ summation.References
- George E. Andrews, Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441–484. MR 352557, DOI 10.1137/1016081
- —, private communication, June 2000.
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Richard Askey, The very well poised $_{6}\psi _{6}$. II, Proc. Amer. Math. Soc. 90 (1984), no. 4, 575–579. MR 733409, DOI 10.1090/S0002-9939-1984-0733409-8
- Richard Askey and Mourad E. H. Ismail, The very well poised $_{6}\psi _{6}$, Proc. Amer. Math. Soc. 77 (1979), no. 2, 218–222. MR 542088, DOI 10.1090/S0002-9939-1979-0542088-2
- W. N. Bailey, Series of hypergeometric type which are infinite in both directions, Quart. J. Math. (Oxford) 7 (1936), 105–115.
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- A.-L. Cauchy, Mémoire sur les fonctions dont plusieurs valeurs $\ldots$, C. R. Acad. Sci. Paris 17 (1843), 523; reprinted in Oeuvres de Cauchy, Ser. 1 8, Gauthier-Villars, Paris (1893), 42–50.
- Jan F. van Diejen, On certain multiple Bailey, Rogers and Dougall type summation formulas, Publ. Res. Inst. Math. Sci. 33 (1997), no. 3, 483–508. MR 1474700, DOI 10.2977/prims/1195145326
- J. Dougall, On Vandermonde’s theorem and some more general expansions, Proc. Edinburgh Math. Soc. 25 (1907), 114–132.
- George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR 1052153
- C. F. Gauß, Disquisitiones generales circa seriem infinitam $\ldots$, Comm. soc. reg. sci. Gött. rec. 2 (1813), reprinted in his Werke (Göttingen), vol. 3 (1860), 123–163.
- R. A. Gustafson, The Macdonald identities for affine root systems of classical type and hypergeometric series very-well-poised on semisimple Lie algebras, Ramanujan International Symposium on Analysis (Pune, 1987) Macmillan of India, New Delhi, 1989, pp. 185–224. MR 1117471
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- E. Heine, Untersuchungen über die Reihe $\ldots$, J. reine angew. Math. 34 (1847), 285–328.
- Mourad E. H. Ismail, A simple proof of Ramanujan’s $_{1}\psi _{1}$ sum, Proc. Amer. Math. Soc. 63 (1977), no. 1, 185–186. MR 508183, DOI 10.1090/S0002-9939-1977-0508183-7
- F. H. Jackson, Summation of $q$-hypergeometric series, Messenger of Math. 57 (1921), 101–112.
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Tom H. Koornwinder, On Zeilberger’s algorithm and its $q$-analogue, Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), 1993, pp. 91–111. MR 1246853, DOI 10.1016/0377-0427(93)90317-5
- Stephen C. Milne, Balanced $_3\phi _2$ summation theorems for $\textrm {U}(n)$ basic hypergeometric series, Adv. Math. 131 (1997), no. 1, 93–187. MR 1475046, DOI 10.1006/aima.1997.1658
- R. J. Rogers, Third memoir on the expansion of certain infinite products, Proc. London Math. Soc. 26 (1894), 15–32.
- M. Schlosser, Summation theorems for multidimensional basic hypergeometric series by determinant evaluations, Discrete Math. 210 (2000), 151–169.
- —, Elementary derivations of identities for bilateral basic hypergeometric series, preprint.
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
Bibliographic Information
- Michael Schlosser
- Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210
- Address at time of publication: Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
- Email: mschloss@math.ohio-state.edu, schlosse@ap.univie.ac.at
- Received by editor(s): July 7, 2000
- Received by editor(s) in revised form: September 25, 2000, and October 18, 2000
- Published electronically: October 1, 2001
- Communicated by: John R. Stembridge
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1113-1123
- MSC (2000): Primary 33D15
- DOI: https://doi.org/10.1090/S0002-9939-01-06175-5
- MathSciNet review: 1873786