Exactness of one relator groups
HTML articles powered by AMS MathViewer
- by Erik Guentner
- Proc. Amer. Math. Soc. 130 (2002), 1087-1093
- DOI: https://doi.org/10.1090/S0002-9939-01-06195-0
- Published electronically: October 12, 2001
- PDF | Request permission
Abstract:
A discrete group ${\Gamma }$ is $C^*$-exact if the reduced crossed product with ${\Gamma }$ converts a short exact sequence of ${\Gamma }$-$C^*$-algebras into a short exact sequence of $C^*$-algebras. A one relator group is a discrete group ${\Gamma }$ admitting a presentation ${\Gamma }=\langle \; X \;|\; R \;\rangle$ where $X$ is a countable set and $R$ is a single word over $X$. In this short paper we prove that all one relator discrete groups are $C^*$-exact. Using the Bass-Serre theory we also prove that a countable discrete group $\Gamma$ acting without inversion on a tree is $C^*$-exact if the vertex stabilizers of the action are $C^*$-exact.References
- S. Adams, Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology 33 (1994), no. 4, 765–783. MR 1293309, DOI 10.1016/0040-9383(94)90007-8
- C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies de L’Enseignement Math. 36, Geneva, 2000.
- Gilbert Baumslag, Topics in combinatorial group theory, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. MR 1243634, DOI 10.1007/978-3-0348-8587-4
- Cédric Béguin, Hela Bettaieb, and Alain Valette, $K$-theory for $C^\ast$-algebras of one-relator groups, $K$-Theory 16 (1999), no. 3, 277–298. MR 1681180, DOI 10.1023/A:1007755408585
- P. Cherix, M. Cowling, P. Jollissaint, P. Julg, and A. Valette, Locally compact groups with the Haagerup property, Unpublished manuscript, 1998.
- Alain Connes and Henri Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), no. 3, 345–388. MR 1066176, DOI 10.1016/0040-9383(90)90003-3
- K. Dykema, Exactness of reduced amalgamated free product $C^*$-algebras, Preprint, 1999.
- E. Germain, Approximate invariant means for boundary actions of hyperbolic groups, Appendix to Amenable Groupoids [ADR98], 1998.
- E. Guentner and J. Kaminker, Exactness and the Novikov conjecture, To appear in Topology, 1999.
- E. Guentner and J. Kaminker, Addendum to “Exactness and the Novikov conjecture”, To appear in Topology, 2000.
- M. Gromov, Spaces and questions, Unpublished manuscript, 1999.
- Nigel Higson and Gennadi Kasparov, Operator $K$-theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 131–142. MR 1487204, DOI 10.1090/S1079-6762-97-00038-3
- N. Higson and G. G. Kasparov, $E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space, To appear in Invent. Math., 2000.
- G. G. Kasparov, Equivariant $KK$-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147–201. MR 918241, DOI 10.1007/BF01404917
- Eberhard Kirchberg and Simon Wassermann, Operations on continuous bundles of $C^*$-algebras, Math. Ann. 303 (1995), no. 4, 677–697. MR 1359955, DOI 10.1007/BF01461011
- E. Kirchberg and S. Wassermann, Permanence properties of $C^*$-exact groups, Documenta Mathematica 4 (1999), 513–558.
- L. Lance, On nuclear $C^*$-algebras, J. Funct. Anal. 12 (1973), 157–176.
- James McCool and Paul E. Schupp, On one relator groups and $\textrm {HNN}$ extensions, J. Austral. Math. Soc. 16 (1973), 249–256. Collection of articles dedicated to the memory of Hanna Neumann, II. MR 0338186, DOI 10.1017/S1446788700014300
- N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Ser. I Math. 330 (2000), No. 8, 691–695.
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- A. M. Sinclair and R. R. Smith, The completely bounded approximation property for discrete crossed products, Indiana Univ. Math. J. 46 (1997), no. 4, 1311–1322. MR 1631596, DOI 10.1512/iumj.1997.46.1428
- J. L. Tu, Remarks On Yu’s Property A for discrete metric spaces and groups, Preprint, 2000.
Bibliographic Information
- Erik Guentner
- Affiliation: Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, Indiana 46202-3216
- Address at time of publication: Mathematical Sciences Research Institute, 100 Centennial Drive, #5070, Berkeley, California 94702-5070
- Email: guentner@msri.org
- Received by editor(s): October 9, 2000
- Published electronically: October 12, 2001
- Additional Notes: The author was supported with funds from the NSF
- Communicated by: Joseph A. Ball
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1087-1093
- MSC (1991): Primary 47L85; Secondary 20E06, 22D15
- DOI: https://doi.org/10.1090/S0002-9939-01-06195-0
- MathSciNet review: 1873783