Linear systems on abelian varieties of dimension $2g+1$
HTML articles powered by AMS MathViewer
- by Jaya N. Iyer
- Proc. Amer. Math. Soc. 130 (2002), 959-962
- DOI: https://doi.org/10.1090/S0002-9939-01-06264-5
- Published electronically: November 9, 2001
- PDF | Request permission
Abstract:
We show that polarisations of type $(1,...,1,2g+2)$ on $g$-dimensional abelian varieties are never very ample, if $g\geq 3$. This disproves a conjecture of Debarre, Hulek and Spandaw. We also give a criterion for non-embeddings of abelian varieties into $2g+1$-dimensional linear systems.References
- W. Barth, Transplanting cohomology classes in complex-projective space, Amer. J. Math. 92 (1970), 951–967. MR 287032, DOI 10.2307/2373404
- Herbert Lange and Christina Birkenhake, Complex abelian varieties, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487, DOI 10.1007/978-3-662-02788-2
- O. Debarre, K. Hulek, and J. Spandaw, Very ample linear systems on abelian varieties, Math. Ann. 300 (1994), no. 2, 181–202. MR 1299059, DOI 10.1007/BF01450483
- S. Ramanan, Ample divisors on abelian surfaces, Proc. London Math. Soc. (3) 51 (1985), no. 2, 231–245. MR 794112, DOI 10.1112/plms/s3-51.2.231
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512–519. MR 51, DOI 10.1215/S0012-7094-39-00542-9
Bibliographic Information
- Jaya N. Iyer
- Affiliation: Institut de Mathématiques, Case 247, Université Paris-6, 4, Place Jussieu, 75252, Paris Cedex 05, France
- Address at time of publication: FB6, Mathematik, Universität GH Essen, 45117 Essen, Germany
- Email: iyer@math.jussieu.fr, jaya.iyer@uni-essen.de
- Received by editor(s): May 10, 2000
- Received by editor(s) in revised form: October 10, 2000
- Published electronically: November 9, 2001
- Communicated by: Michael Stillman
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 959-962
- MSC (1991): Primary 14C20, 14B05, 14E25
- DOI: https://doi.org/10.1090/S0002-9939-01-06264-5
- MathSciNet review: 1873767