Interpretation of the deformation space of a determinantal Barlow surface via smoothings
HTML articles powered by AMS MathViewer
- by Yongnam Lee
- Proc. Amer. Math. Soc. 130 (2002), 963-969
- DOI: https://doi.org/10.1090/S0002-9939-01-06267-0
- Published electronically: October 1, 2001
- PDF | Request permission
Abstract:
In this present paper, we provide an interpretation of the deformation space of a determinantal Barlow surface via smoothings.References
- Rebecca Barlow, A simply connected surface of general type with $p_g=0$, Invent. Math. 79 (1985), no. 2, 293–301. MR 778128, DOI 10.1007/BF01388974
- F. Catanese, Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent. Math. 63 (1981), no. 3, 433–465. MR 620679, DOI 10.1007/BF01389064
- F. Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984), no. 2, 483–515. MR 755236, DOI 10.4310/jdg/1214438689
- Fabrizio Catanese and Claude LeBrun, On the scalar curvature of Einstein manifolds, Math. Res. Lett. 4 (1997), no. 6, 843–854. MR 1492124, DOI 10.4310/MRL.1997.v4.n6.a5
- S. Donaldson and R. Friedman, Connected sums of self-dual manifolds and deformations of singular spaces, Nonlinearity 2 (1989), no. 2, 197–239. MR 994091, DOI 10.1088/0951-7715/2/2/002
- Robert Friedman, Global smoothings of varieties with normal crossings, Ann. of Math. (2) 118 (1983), no. 1, 75–114. MR 707162, DOI 10.2307/2006955
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée. MR 0345092
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Yongnam Lee, Bicanonical pencil of a determinantal Barlow surface, Trans. Amer. Math. Soc. 353 (2001), no. 3, 893–905. MR 1707700, DOI 10.1090/S0002-9947-00-02609-X
- Ulf Persson and Henry Pinkham, Some examples of nonsmoothable varieties with normal crossings, Duke Math. J. 50 (1983), no. 2, 477–486. MR 705035
Bibliographic Information
- Yongnam Lee
- Affiliation: Department of Mathematics, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121–742, Korea
- Email: ynlee@ccs.sogang.ac.kr
- Received by editor(s): May 10, 2000
- Received by editor(s) in revised form: October 17, 2000
- Published electronically: October 1, 2001
- Additional Notes: This work was supported by grant 1999-2-102-002-3 from the Interdisciplinary Research Program of the KOSEF and by the Sogang University Research Grants in 2000
- Communicated by: Michael Stillman
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 963-969
- MSC (2000): Primary 14J10, 14J17
- DOI: https://doi.org/10.1090/S0002-9939-01-06267-0
- MathSciNet review: 1873768