An expression of spectral radius via Aluthge transformation
HTML articles powered by AMS MathViewer
- by Takeaki Yamazaki
- Proc. Amer. Math. Soc. 130 (2002), 1131-1137
- DOI: https://doi.org/10.1090/S0002-9939-01-06283-9
- Published electronically: September 19, 2001
- PDF | Request permission
Abstract:
For an operator $T\in B(H)$, the Aluthge transformation of $T$ is defined by $\widetilde {T}=|T|^{\frac {1}{2}}U|T|^{\frac {1}{2}}$. And also for a natural number $n$, the $n$-th Aluthge transformation of $T$ is defined by $\widetilde {T_{n}}=\widetilde {(\widetilde {T_{n-1}})}$ and $\widetilde {T_{1}}=\widetilde {T}$. In this paper, we shall show \begin{equation*} \lim _{n\to \infty }\|\widetilde {T_{n}}\|=r(T),\end{equation*} where $r(T)$ is the spectral radius.References
- Ariyadasa Aluthge, On $p$-hyponormal operators for $0<p<1$, Integral Equations Operator Theory 13 (1990), no. 3, 307–315. MR 1047771, DOI 10.1007/BF01199886
- Ariyadasa Aluthge and Derming Wang, $w$-hyponormal operators, Integral Equations Operator Theory 36 (2000), no. 1, 1–10. MR 1736916, DOI 10.1007/BF01236285
- Masatoshi Fujii, Saichi Izumino, and Ritsuo Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, Nihonkai Math. J. 5 (1994), no. 1, 61–67. MR 1285558
- Takayuki Furuta and Masahiro Yanagida, Further extensions of Aluthge transformation on $p$-hyponormal operators, Integral Equations Operator Theory 29 (1997), no. 1, 122–125. MR 1466864, DOI 10.1007/BF01191484
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Tadasi Huruya, A note on $p$-hyponormal operators, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3617–3624. MR 1416089, DOI 10.1090/S0002-9939-97-04004-5
- I.B.Jung, E.Ko and C.Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory, 37 (2000), 437–448.
- Kôtarô Tanahashi, On log-hyponormal operators, Integral Equations Operator Theory 34 (1999), no. 3, 364–372. MR 1689394, DOI 10.1007/BF01300584
- T.Yamazaki, Characterizations of $\log A\geq \log B$ and normaloid operators via Heinz inequality, preprint.
Bibliographic Information
- Takeaki Yamazaki
- Affiliation: Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan
- Email: yamazt26@kanagawa-u.ac.jp
- Received by editor(s): October 27, 2000
- Published electronically: September 19, 2001
- Communicated by: Joseph A. Ball
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1131-1137
- MSC (2000): Primary 47A13, 47A30
- DOI: https://doi.org/10.1090/S0002-9939-01-06283-9
- MathSciNet review: 1873788