Problèmes de petites valeurs propres sur les surfaces de courbure moyenne constante
HTML articles powered by AMS MathViewer
- by Philippe Castillon
- Proc. Amer. Math. Soc. 130 (2002), 1153-1163
- DOI: https://doi.org/10.1090/S0002-9939-01-06295-5
- Published electronically: October 12, 2001
- PDF | Request permission
Abstract:
This paper deals with the spectra of the Laplace and stability operators of a constant mean curvature surface in the hyperbolic space. In a preceding work, the author described the essential spectra of these operators, assuming that the surface is of finite total curvature. In this paper, we prove that these two operators have a finite number of eigenvalues below their essential spectra.References
- Michael T. Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982), no. 3, 477–494. MR 679768, DOI 10.1007/BF01389365
- J. Lucas Barbosa, Manfredo do Carmo, and Jost Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), no. 1, 123–138. MR 917854, DOI 10.1007/BF01161634
- Pierre H. Bérard, Spectral geometry: direct and inverse problems, Lecture Notes in Mathematics, vol. 1207, Springer-Verlag, Berlin, 1986. With appendixes by Gérard Besson, and by Bérard and Marcel Berger. MR 861271, DOI 10.1007/BFb0076330
- P. Bérard, M. do Carmo, and W. Santos, The index of constant mean curvature surfaces in hyperbolic $3$-space, Math. Z. 224 (1997), no. 2, 313–326. MR 1431198, DOI 10.1007/PL00004288
- P. Bérard, M. do Carmo, and W. Santos, Complete hypersurfaces with constant mean curvature and finite total curvature, Ann. Global Anal. Geom. 16 (1998), no. 3, 273–290. MR 1626675, DOI 10.1023/A:1006542723958
- Bordoni, M.– Comparing heat operators through local isometries or fibrations, Prépublication de l’E.N.S. Lyon $n^o$ 190, 1996.
- Manfredo P. do Carmo and Alexandre M. Da Silveira, Index and total curvature of surfaces with constant mean curvature, Proc. Amer. Math. Soc. 110 (1990), no. 4, 1009–1015. MR 1039255, DOI 10.1090/S0002-9939-1990-1039255-5
- Philippe Castillon, Sur l’opérateur de stabilité des sous-variétés à courbure moyenne constante dans l’espace hyperbolique, Manuscripta Math. 94 (1997), no. 3, 385–400 (French). MR 1485444, DOI 10.1007/BF02677861
- Philippe Castillon, Spectral properties of constant mean curvature submanifolds in hyperbolic space, Ann. Global Anal. Geom. 17 (1999), no. 6, 563–580. MR 1728088, DOI 10.1023/A:1006690108504
- Shiu Yuen Cheng, Peter Li, and Shing-Tung Yau, Heat equations on minimal submanifolds and their applications, Amer. J. Math. 106 (1984), no. 5, 1033–1065. MR 761578, DOI 10.2307/2374272
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- E. B. Davies and N. Mandouvalos, Heat kernel bounds on hyperbolic space and Kleinian groups, Proc. London Math. Soc. (3) 57 (1988), no. 1, 182–208. MR 940434, DOI 10.1112/plms/s3-57.1.182
- Jozef Dodziuk, Thea Pignataro, Burton Randol, and Dennis Sullivan, Estimating small eigenvalues of Riemann surfaces, The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985) Contemp. Math., vol. 64, Amer. Math. Soc., Providence, RI, 1987, pp. 93–121. MR 881458, DOI 10.1090/conm/064/881458
- D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), no. 1, 121–132. MR 808112, DOI 10.1007/BF01394782
- Hermann Karcher, Riemannian comparison constructions, Global differential geometry, MAA Stud. Math., vol. 27, Math. Assoc. America, Washington, DC, 1989, pp. 170–222. MR 1013810
- Barbara Nelli and Joel Spruck, On the existence and uniqueness of constant mean curvature hypersurfaces in hyperbolic space, Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, 1996, pp. 253–266. MR 1449411
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- Alexandre M. Da Silveira, Stability of complete noncompact surfaces with constant mean curvature, Math. Ann. 277 (1987), no. 4, 629–638. MR 901709, DOI 10.1007/BF01457862
- Yoshihiro Tonegawa, Existence and regularity of constant mean curvature hypersurfaces in hyperbolic space, Math. Z. 221 (1996), no. 4, 591–615. MR 1385170, DOI 10.1007/BF02622135
Bibliographic Information
- Philippe Castillon
- Affiliation: Institut Fourier, B.P. 74, 38402 Saint Martin d’Hères Cedex, France
- Address at time of publication: Département des Sciences Mathématiques, cc 51, Université Montpellier 2, 34 095 Montpellier cedex 5, France
- Email: philippe.castillon@ujf-grenoble.fr, philippe.castillon@math.univ-montp2.fr
- Received by editor(s): October 11, 2000
- Published electronically: October 12, 2001
- Communicated by: Jozef Dodziuk
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1153-1163
- MSC (2000): Primary 53C42, 53A10, 58J50; Secondary 58J35
- DOI: https://doi.org/10.1090/S0002-9939-01-06295-5
- MathSciNet review: 1873791