Regularity of viscosity solutions of a degenerate parabolic equation
HTML articles powered by AMS MathViewer
- by Yun-Guang Lu and Liwen Qian
- Proc. Amer. Math. Soc. 130 (2002), 999-1004
- DOI: https://doi.org/10.1090/S0002-9939-01-06313-4
- Published electronically: November 9, 2001
- PDF | Request permission
Abstract:
We study the Cauchy problem for the nonlinear degenerate parabolic equation of second order \[ \left \{ \begin {array}{l} u_t=u\triangle u-\gamma |\nabla u|^2 \ \ \text {in} \hspace {0.3cm} \Omega =R^N \times R^{+}, u(x,0)=u_{0}(x)\ \ \ \ \ \ \ \ \text {in} \hspace {0.3cm} R^{N}, \end {array} \right . \] and present regularity results for the viscosity solutions.References
- Maura Ughi, A degenerate parabolic equation modelling the spread of an epidemic, Ann. Mat. Pura Appl. (4) 143 (1986), 385–400. MR 859613, DOI 10.1007/BF01769226
- Michiel Bertsch, Roberta Dal Passo, and Maura Ughi, Discontinuous “viscosity” solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc. 320 (1990), no. 2, 779–798. MR 965742, DOI 10.1090/S0002-9947-1990-0965742-6
- Michiel Bertsch and Maura Ughi, Positivity properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal. 14 (1990), no. 7, 571–592. MR 1044287, DOI 10.1016/0362-546X(90)90063-M
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Yun-Guang Lu, Hölder estimates of solutions of biological population equations, Appl. Math. Lett. 13 (2000), no. 6, 123–126. MR 1772704, DOI 10.1016/S0893-9659(00)00066-5
- Yun-Guang Lu, Hölder estimates of solutions to some doubly nonlinear degenerate parabolic equations, Comm. Partial Differential Equations 24 (1999), no. 5-6, 895–913. MR 1680901, DOI 10.1080/03605309908821452
- Liwen Qian and Wentao Fan, A remark of the Hölder estimate of solutions of some degenerate parabolic equations, Acta Math. Sci. (English Ed.) 19 (1999), no. 4, 463–468. MR 1735613, DOI 10.1016/S0252-9602(17)30531-3
- P. Z. Mkrtychyan, A degenerate quasilinear parabolic equation that arises in the theory of nonstationary filtration, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 24 (1989), no. 2, 103–116, 199 (Russian, with English and Armenian summaries); English transl., Soviet J. Contemporary Math. Anal. 24 (1989), no. 2, 1–13. MR 1015845
- P. Z. Mkrtychyan, Estimation of the gradient of a solution and the classical solvability of the first initial-boundary value problem for a class of quasilinear nonuniformly parabolic equations, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 24 (1989), no. 3, 293–299, 307 (Russian); English transl., Soviet J. Contemporary Math. Anal. 24 (1989), no. 3, 85–91. MR 1029916
- B. H. Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc. (2) 13 (1976), no. 1, 103–106. MR 399658, DOI 10.1112/jlms/s2-13.1.103
Bibliographic Information
- Yun-Guang Lu
- Affiliation: Departamento de Matematicas y Estadistica, Universidad Nacional de Colombia, Bogota, Colombia
- Email: yglu@matematicas.unal.edu.co
- Liwen Qian
- Affiliation: Department of Computational Science, National University of Singapore, Singapore 117543
- Address at time of publication: Singapore-MIT Alliance, National University of Singapore, Singapore 119260
- Email: qianlw@cz3.nus.edu.sg, smaqlw@nus.edu.sg
- Received by editor(s): November 1, 1998
- Received by editor(s) in revised form: April 10, 2000
- Published electronically: November 9, 2001
- Communicated by: Suncica Canic
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 999-1004
- MSC (2000): Primary 35K55; Secondary 35K65, 35D10
- DOI: https://doi.org/10.1090/S0002-9939-01-06313-4
- MathSciNet review: 1873772