The diffeomorphism type of certain $S^{3}$-bundles over $S^{4}$
HTML articles powered by AMS MathViewer
- by Marc Sanchez and Frederick Wilhelm
- Proc. Amer. Math. Soc. 130 (2002), 1139-1143
- DOI: https://doi.org/10.1090/S0002-9939-01-06380-8
- Published electronically: November 9, 2001
- PDF | Request permission
Abstract:
In this note we show that the unit tangent bundle of $S^{4}$ is diffeomorphic to the total space of a certain principal $S^{3}$-bundle over $S^{4}$, solving a problem of James and Whitehead.References
- D. Crowley and C. Escher, A classification of $S^{3}$–bundles over $S^{4},$ preprint.
- Jean Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma _{4}=0)$, Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968 (French). MR 0229250, DOI 10.1007/BFb0060395
- Herman Gluck, Frank Warner, and Wolfgang Ziller, The geometry of the Hopf fibrations, Enseign. Math. (2) 32 (1986), no. 3-4, 173–198. MR 874686
- Detlef Gromoll and Wolfgang Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. (2) 100 (1974), 401–406. MR 375151, DOI 10.2307/1971078
- K. Grove and W. Ziller, Curvature and symmetry of Milnor spheres, Annals of Math. 152 (2000) 331-367.
- Allen E. Hatcher, A proof of the Smale conjecture, $\textrm {Diff}(S^{3})\simeq \textrm {O}(4)$, Ann. of Math. (2) 117 (1983), no. 3, 553–607. MR 701256, DOI 10.2307/2007035
- Dale Husemoller, Fibre bundles, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. MR 1249482, DOI 10.1007/978-1-4757-2261-1
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Peter Petersen and Frederick Wilhelm, Examples of Riemannian manifolds with positive curvature almost everywhere, Geom. Topol. 3 (1999), 331–367. MR 1714915, DOI 10.2140/gt.1999.3.331
- A. Rigas, Some bundles of non-negative curvature, Math. Ann. 232 (1978), no. 2, 187–193. MR 464254, DOI 10.1007/BF01421406
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- F. Wilhelm, Exotic spheres with lots of positive curvatures, J. Geom. Anal. 11 (2001) 161-186.
- F. Wilhelm, An exotic sphere with positive curvature almost everywhere, J. Geom. Anal., to appear.
Bibliographic Information
- Marc Sanchez
- Affiliation: 4243 Edgewood Place, Riverside, California 92506
- Email: marc.sanchez@usa.net
- Frederick Wilhelm
- Affiliation: Department of Mathematics, University of California, Riverside, California 92521-0135
- Email: fred@math.ucr.edu
- Received by editor(s): March 20, 2000
- Published electronically: November 9, 2001
- Additional Notes: This work was partially suported by the NSF
- Communicated by: Ralph Cohen
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1139-1143
- MSC (1991): Primary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-01-06380-8
- MathSciNet review: 1873789