Lower estimate for the integral means spectrum for $p=-1$
HTML articles powered by AMS MathViewer
- by Ilgiz Kayumov
- Proc. Amer. Math. Soc. 130 (2002), 1005-1007
- DOI: https://doi.org/10.1090/S0002-9939-01-06401-2
- Published electronically: November 28, 2001
- PDF | Request permission
Abstract:
In this paper we show that there exists a function $f$ bounded and univalent in the unit disk, such that $\int |f’(re^{i\theta })|^{-1}d\theta \ge C(1-r)^{-0.127}$, $0 \leq r <1.$References
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- S. Rohde, Hausdorffmas und Randverhalten analytischer Functionen, Thesis, Technische Universität, Berlin, 1989.
- Lennart Carleson and Peter W. Jones, On coefficient problems for univalent functions and conformal dimension, Duke Math. J. 66 (1992), no. 2, 169–206. MR 1162188, DOI 10.1215/S0012-7094-92-06605-1
- P. Kraetzer, Experimental bounds for the universal integral means spectrum of conformal maps, Complex Variables Theory Appl. 31 (1996), no. 4, 305–309. MR 1427159, DOI 10.1080/17476939608814969
- I.R. Kayumov, Lower estimates for the integral means spectrum, Complex Variables 44 (2001), 165-171.
Bibliographic Information
- Ilgiz Kayumov
- Affiliation: Chebotarev Research Institute, Kazan State University, Universiteskaya 17, 420008 Kazan, Russian Federation
- Email: ikayumov@ksu.ru
- Received by editor(s): September 13, 2000
- Published electronically: November 28, 2001
- Additional Notes: This work was supported by Russian Fund of Basic Research (proj 99-01-00366, 99-01-00173)
- Communicated by: Juha M. Heinonen
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1005-1007
- MSC (2000): Primary 30C55, 30C50
- DOI: https://doi.org/10.1090/S0002-9939-01-06401-2
- MathSciNet review: 1873773