LOWER ESTIMATE
FOR THE INTEGRAL MEANS SPECTRUM FOR $p = -1$

ILGIZ KAYUMOV

(Communicated by Juha M. Heinonen)

Abstract. In this paper we show that there exists a function f bounded
and univalent in the unit disk, such that
$$\frac{\log \int |f'(re^{i\theta})|^p d\theta}{\log \frac{1}{1-r}} \leq C(1-r)^{-0.127},$$
$0 \leq r < 1$.

The aim of the paper is to obtain a new lower estimate for the integral means
spectrum
$$\beta(p) = \lim_{r \to 1^-} \frac{\log \int |f'(re^{i\theta})|^p d\theta}{\log \frac{1}{1-r}}$$
of bounded univalent functions in $D = \{|z| < 1\}$ for $p = -1$. Rohde [Roh89],
Pommerenke [Pom91] proved that there exists a bounded univalent function such that $\beta(-1) \geq 0.109$. Using Carleson-Jones ideas [CJ92], Kraetzer [Kra96] obtained numerical
evidence that for every $p \in [-2, 2]$ there exists a bounded univalent function for
which $\beta(p) \geq p^2/4$.

In this paper we analytically show that there exists a bounded univalent function f for which $\beta(-1) \geq 0.127$.

Define the function
$$f(z) = z \exp \int_0^z \frac{e^{at} - 1}{t} dt, \quad a = 1.7646.$$ We shall prove that f is univalent in $D = \{|z| < 1\}$ function. Since f is a real
function it is enough to show that $L = \{f(e^{i\theta}), 0 < \theta < \pi\}$ is a simple curve and
that $L \cap \mathbb{R}$ is empty. It is useful to mention that
$$\frac{d}{d\theta} \log f(e^{i\theta}) = i \exp(ae^{i\theta}).$$

It follows from
$$\frac{d|f|}{d\theta} = -|f| e^{a \cos \theta} \sin(a \sin \theta) < 0, \quad 0 < \theta < \pi,$$ that L is a simple curve.

Consider
$$\frac{d}{d\theta} \arg f(e^{i\theta}) = e^{a \cos \theta} \cos(a \sin \theta).$$
In our case, the equation \(\frac{d}{d \theta} \arg f = 0 \) is equivalent to the equation \(a \sin \theta = \pi/2 \) which has two roots \(\theta_1 < \theta_2 \) on \((0, \pi) \). Now, it is clear that \(\text{Im} f(e^{i\theta_1}) > 0 \) implies \(L \cap R = \emptyset \). But this follows from a straightforward calculation.

Therefore, \(f \) is univalent and bounded in the unit disk \(D \). Hence the functions \(f_n(z) = f(z^n)^{1/n} \) are also bounded and univalent in \(D \). Note that

\[
f_n'(z) = \exp \left(a z^n + \frac{1}{n} \int_0^{z^n} \frac{e^{at} - 1}{t} \, dt \right).
\]

Put

\[
\Phi(z) = M^{1+1/q} \lim_{n \to \infty} g_n(z), \quad M = \exp \int_0^1 \frac{e^{at} - 1}{t} \, dt
\]

where \(g_0(z) = z, g_n(z) = g_{n-1}(M^{-1/q^{n-1}} f_{q^{n-1}}(z)), n = 1, 2, \ldots \).

Applying standard methods of geometric function theory it is easy to establish that the function \(\Phi \) is well defined, bounded, and univalent in \(D \). The idea of using compositions of univalent functions was first used by Pommerenke [Pom91]. At the present time it is a most effective method for constructing pathologic mappings.

We have

\[
\log \Phi'(z) = \sum_{k=0}^{\infty} \log f_n'(\phi_k(z)) = \sum_{k=0}^{\infty} \left(a \phi_k^{q^k}(z) + \frac{1}{q^k} \int_0^{\phi_k^{q^k}(z)} \frac{e^{at} - 1}{t} \, dt \right),
\]

where \(\phi_k(z) = M^{\frac{1}{q^{k+1}}} z + \ldots \) and \(|\phi_k| < 1, z \in D \). Therefore

\[
\left| \log \Phi'(z) - \sum_{k=0}^{\infty} a \phi_k^{q^k}(z) \right| \leq \text{const}, z \in D.
\]

Since the Taylor coefficients of \(\phi_k \) are positive then

\[
|\phi_k(z) - M^{\frac{1}{q^{k+1}}} z| \leq |z| \left(1 - M^{\frac{1}{q^{k+1}}} \right)
\]

and

\[
|\phi_k^{q^k}(z) - M^{\frac{1}{q^{k+1}}} z^{q^k}| \leq |z|^{q^k} |z|^{q^{k+1}} \leq \frac{|z|^{q^k} \log M}{q - 1}.
\]

It is known [Pom91] that

\[
\sum_{k=1}^{\infty} r^{q^k} \leq \log \frac{1}{1 - r} / \log q + \text{const}.
\]

Thus,

\[
(1) \quad \left| \log \Phi'(z) - \sum_{k=0}^{\infty} a M^{-1/(q-1)} z^{q^k} \right| \leq \frac{a \log M}{(q - 1) \log q} \log \frac{1}{1 - r} + \text{const}, \quad r = |z|,
\]

and we can prove the following

Theorem 1.

\[
\int_0^{2\pi} |\Phi'(re^{i\theta})|^{-1} d\theta \geq \text{const}(1 - r)^{-0.127}.
\]
Proof. Define \(\log f'_0(z) = \sum_{k=1}^{\infty} aM^{-1/(q-1)} z^k \). Rohde [Roh89], [Pom91] proved that

\[
\int_0^{2\pi} |f'_0(re^{i\theta})|^{-1} d\theta \geq \text{Const}(1-r)^{-\alpha}
\]

where \(\alpha = \log I_0(aM^{-1/(q-1)})/\log q \) and

\[
I_0(x) = \sum_{\nu=0}^{\infty} \frac{x^{2\nu}}{2^{2\nu} \nu!} \text{ is a modified Bessel function.}
\]

Now, it follows from (1) that

\[
\int_0^{2\pi} |\Phi(re^{i\theta})|^{-1} d\theta \geq \text{const}(1-r)^{-\gamma}
\]

where

\[
\gamma = \frac{\log I_0(aM^{-1/(q-1)})}{\log q} - \frac{a \log M}{(q-1) \log q}.
\]

With the choice \(q = 69 \) we obtain our estimate. \(\square \)

Let us remark that the author [Kay01] used the Koebe function as a starting function for lower estimates when \(p \) is positive.

Acknowledgement

I thank Professor F.G. Avhadiev for helpful discussions.

References

Chebotarev Research Institute, Kazan State University, Universitetskaya 17, 420008 Kazan, Russian Federation
E-mail address: ikayumov@ksu.ru