Sphere-preserving maps in inversive geometry
HTML articles powered by AMS MathViewer
- by A. F. Beardon and D. Minda
- Proc. Amer. Math. Soc. 130 (2002), 987-998
- DOI: https://doi.org/10.1090/S0002-9939-01-06427-9
- Published electronically: November 9, 2001
- PDF | Request permission
Abstract:
We give an extensive discussion of sphere-preserving maps defined on subdomains of Euclidean $n$-space, and their relationship to Möbius maps and to the preservation of cross-ratios. In the case $n=2$ (the complex plane) we also relate these ideas to the solutions of certain functional equations.References
- J. Aczél and M. A. McKiernan, On the characterization of plane projective and complex Moebius-transformations, Math. Nachr. 33 (1967), 315–337. MR 222756, DOI 10.1002/mana.19670330506
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Carathéodory, C., The most general transformations of plane regions which transform circles into circles, Bull. Amer. Math. Soc. 43 (1937), 573-579.
- Alexander Chubarev and Iosif Pinelis, Fundamental theorem of geometry without the $1$-to-$1$ assumption, Proc. Amer. Math. Soc. 127 (1999), no. 9, 2735–2744. MR 1657778, DOI 10.1090/S0002-9939-99-05280-6
- Julian Lowell Coolidge, A treatise on the circle and the sphere, Chelsea Publishing Co., Bronx, N.Y., 1971. Reprint of the 1916 edition. MR 0389515
- H. S. M. Coxeter, Similarities and conformal transformations, Ann. Mat. Pura Appl. (4) 53 (1961), 165–172. MR 143083, DOI 10.1007/BF02417794
- H. S. M. Coxeter, Introduction to geometry, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0346644
- Hiroshi Haruki and Themistocles M. Rassias, A new characteristic of Möbius transformations by use of Apollonius quadrilaterals, Proc. Amer. Math. Soc. 126 (1998), no. 10, 2857–2861. MR 1485479, DOI 10.1090/S0002-9939-98-04736-4
- Thomas W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1974. MR 0354211
- Jeffers, J., Lost theorems of geometry, American Math. Monthly 107 (2000), 800-812.
- M. Jean McKemie and Jussi Väisälä, Spherical maps of Euclidean spaces, Results Math. 35 (1999), no. 1-2, 145–160. MR 1678056, DOI 10.1007/BF03322029
- Radford, J.G., Foundations of hyperbolic manifolds, Springer-Verlag, GTM 149, 1994.
Bibliographic Information
- A. F. Beardon
- Affiliation: Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, England
- Email: A.F.Beardon@dpmms.cam.ac.uk
- D. Minda
- Affiliation: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025
- Email: David.Minda@math.uc.edu
- Received by editor(s): February 29, 2000
- Published electronically: November 9, 2001
- Communicated by: Juha M. Heinonen
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 987-998
- MSC (1991): Primary 30C35; Secondary 51F15
- DOI: https://doi.org/10.1090/S0002-9939-01-06427-9
- MathSciNet review: 1873771