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SPHERE-PRESERVING MAPS IN INVERSIVE GEOMETRY

A. F. BEARDON AND D. MINDA

(Communicated by Juha M. Heinonen)

Abstract. We give an extensive discussion of sphere-preserving maps defined
on subdomains of Euclidean n-space, and their relationship to Möbius maps
and to the preservation of cross-ratios. In the case n = 2 (the complex plane)
we also relate these ideas to the solutions of certain functional equations.

1. Introduction

In this paper we consider various connections that exist between Möbius trans-
formations acting on Rn, absolute cross-ratios of points in Rn, sphere-preserving
maps of Rn into itself and, in the case of the complex plane (where n = 2), the
solutions of the simultaneous functional equations

f(z + w) = f(z) + f(w),(1.1)

f(zw) = f(z)f(w).(1.2)

Given four distinct points a, b, c and d in the extended complex plane C∞, the
cross-ratio and the absolute cross-ratio of these points are defined by

[a, b, c, d] =
(a− c)(b − d)
(a− d)(b − c) , |a, b, c, d| = |a− c| · |b− d||a− d| · |b− c| ,(1.3)

respectively. Of course, |a, b, c, d| is the absolute value of [a, b, c, d], but the absolute
cross-ratio is defined for points in Rn whereas the cross-ratio is not. A Möbius map

g(z) =
az + b

cz + d
, ad− bc 6= 0,(1.4)

of C∞ onto itself preserves cross-ratios (and absolute cross-ratios); a Möbius map
of Rn∞ onto itself preserves absolute cross-ratios (see Section 2).

There are well-known elementary proofs that if f is a continuous injective map of
the extended complex plane C∞ into itself that preserves cross-ratios, or that maps
circles into circles, then f is a Möbius map. Similarly, the continuous simultaneous
solutions of (1.1) and (1.2) are well known. In fact, in both cases the same con-
clusions can be drawn from significantly weaker hypotheses, and we are concerned
with such results here. We shall also investigate (where appropriate) local versions
of these problems for maps of Rn∞ into itself; this case has largely been ignored in
the literature.

The connection between Möbius maps, cross-ratios and the preservation of circles
is well known, so we shall begin by showing the relevance of the functional equations

Received by the editors February 29, 2000.
1991 Mathematics Subject Classification. Primary 30C35; Secondary 51F15.

c©2001 American Mathematical Society

987



988 A. F. BEARDON AND D. MINDA

(1.1) and (1.2) to these topics; this has already been explored in [1]. We say that
an injective map f of C∞ into itself preserves cross-ratios with value α if and only
if [a, b, c, d] = α implies that [f(a), f(b), f(c), f(d)] = α.

Theorem 1.1. Suppose that f is an injective map of R1
∞ into itself, or of C∞

into itself, and that f fixes 0, 1 and ∞. Then f preserves cross-ratios with value
−1 if and only if f satisfies the functional equations (1.1) and (1.2) on R1 or C,
respectively.

Theorem 1.1 (whose proof will be given later) provides us with the link between
Möbius maps and the functional equations. Suppose first that an injective map
g : R1

∞ → R1
∞ preserves cross-ratios with value −1. Then there is a Möbius map

g1 such that g1g fixes 0, 1 and∞, so that if we put f = g1g, then, by Theorem 1.1,
f satisfies (1.1) and (1.2). As the only real solution of (1.1) and (1.2) that fixes
0, 1 is the identity map, we find that if g : R1

∞ → R1
∞ preserves cross-ratios with

value −1, then g is Möbius. By contrast, there exist injective complex solutions of
(1.1) and (1.2) that are not continuous, and hence not Möbius (see [10], Exercise
6, p. 317), so we see that the condition that f : C∞ → C∞ preserves cross-ratios
with value −1 does not imply that f is Möbius. Of course, the functional equations
have no meaning in higher dimensions.

We now know that if f : C∞ → C∞ preserves all cross-ratios, then it is Möbius,
but that if it only preserves cross-ratios with value −1, then it need not be Möbius.
What can be said of the intermediate situations? More precisely, is it possible to
characterize subsets E of C with the property that if [f(a), f(b), f(c), f(d)] ∈ E
whenever [a, b, c, d] ∈ E, then f is Möbius? In fact, there is a dense subset E of
C for which this is not true because any injective solution f of (1.1) and (1.2) is
such that either f(z) fixes every complex rational number or f(z) does. On the
other hand, it was shown recently in [9] (although not stated in this form) that
if f is meromorphic in C, and if f preserves cross-ratios of absolute value 1, then
f is Möbius (this is the case when E is the unit circle). We shall show that the
assumption that f is meromorphic here is irrelevant (just as smoothness conditions
in the classical results are irrelevant), so that the preservation of cross-ratios of
absolute value 1 is, by itself, enough to guarantee that the map is Möbius. This
shows, incidentally, that if f : C → C satisfies (1.1) and (1.2), fixes 0, 1 and ∞,
and maps the unit circle into itself (that is, it preserves numbers of norm 1), then
f is the identity.

We now consider some of these ideas in a little more detail. First, we consider
the main theorem in [9] which we choose to write in terms of cross-ratios rather
than Apollonius quadrilaterals. In [9], four distinct points a, b, c and d in C are
defined to be the vertices of an Apollonius quadrilateral if and only if |a, b, c, d| = 1
(although cross-ratios are never mentioned explicitly in [9]). A Möbius map sends
one Apollonius quadrilateral to another, and the main result in [9] is the converse
to this which, when stated in terms of absolute cross-ratios, reads as follows.

Theorem A. Suppose that f is meromorphic in some domain in C, and that for
every a, b, c and d, |a, b, c, d| = 1 implies |f(a), f(b), f(c), f(d)| = 1. Then f is a
Möbius map.

In the case of a meromorphic function, much more is true and Theorem A can
be greatly strengthened without any difficulty. It is well known that an analytic
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bijection of one disk onto another is a Möbius map, and this fact leads to the
following result.

Theorem B. Suppose that f is meromorphic in a region Ω in C∞. Suppose also
that there is an open disc D, whose closure D lies in Ω, such that f is injective in
D and maps the boundary ∂D of D into a circle C. Then f is the restriction of
some Möbius map to Ω.

The proof is easy. As f is meromorphic and injective on a slightly larger disc than
D, its restriction to D is a homeomorphism. This implies that f(∂D) = C, and also
that f maps D bijectively onto one of the two components of C∞\C. This in turn
implies that the restriction of f to D is Möbius and analytic continuation implies
that f is Möbius throughout C∞. To show that Theorem B includes Theorem A
we have only to observe first that as f preserves absolute cross-ratios equal to 1, it
maps circles into circles (this is elementary and will be discussed later), and second
that f is locally injective at all but a countable set of isolated points.

Our aim is to give an extensive discussion of sphere-preserving maps in all di-
mensions, and to give results of this type that follow from local, rather than global,
hypotheses. In Section 2 we introduce some terminology and notation for higher-
dimensional spaces, and in Section 3 we discuss cross-ratios. Section 4 is devoted
to a brief discussion of maps of the extended real line R1

∞ onto itself, and this is the
first step of a later proof by induction on the dimension. In Section 5 we consider
maps that preserve absolute cross-ratios equal to 1, and in Section 6 we consider
sphere-preserving maps.

We mention that related results can be found in [5], [11] and [12].

2. Higher-dimensional spaces

We write x = (x1, . . . , xn) for a point x in Rn, and the Euclidean distance in Rn
is denoted by |x−y|. The space Rn∪{∞} is denoted by Rn∞, and this supports the
usual chordal distance (see [2], p. 22, and [13], p. 113). The absolute cross-ratio is
defined in Rn∞ in terms of the chordal distance, and this agrees with the definition
(1.3) in terms of the Euclidean distance when the four points are in Rn.

If a and b are in Rn, [a, b] denotes the closed line segment with a and b as
endpoints. A hyperplane in Rn∞ is the set of x (including ∞) satisfying |x − a| =
|x− b| for some distinct a and b in Rn; a Euclidean sphere is the set of x satisfying
|x− a| = r for some a in Rn and some positive r. By analogy with the terminology
used in the complex case, a sphere is either a hyperplane or a Euclidean sphere.
Note that a sphere in Rn∞ has dimension n− 1.

A Möbius map g acting on Rn∞ is a composition of a finite number of reflections
(or inversions) in spheres, and the group of Möbius maps acting on Rn∞ is denoted
byMn. Briefly, we review the main properties of Möbius maps. First, Möbius maps
preserve spheres, and symmetry with respect to spheres. It is known (and easy to
prove) that a map g : Rn∞ → Rn∞ is Möbius if and only if it preserves absolute cross-
ratios ([2], p. 32). Finally, Möbius maps satisfy a unique continuation property: if
f is a map of a region Ω in Rn∞ into Rn∞, and if for each point a in Ω there is an
open ball Ba containing a such that f |Ba is the restriction to Ba of an element of
Mn, then f is the restriction to Ω of an element of Mn (as usual, the restriction
of a map g to a set E is denoted by g|E). This follows immediately from the fact
that if two Möbius maps agree on an open set, then they are identical (because
they agree on and inside a sphere, and they preserve symmetry).
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For each n we embed Rn∞ in Rn+1
∞ by identifying (x1, . . . , xn) and (x1, . . . , xn, 0)

and with this identification every element of Mn extends (in exactly two ways) to
an element of Mn+1 (see [2], p. 33). To be definite, we take this extension to
preserve the upper half-space (given by xn+1 > 0) of Rn+1

∞ . We also identify the
extended complex plane C∞ with R2

∞, and the Möbius maps acting on R2
∞ are then

of the form g(z) or g(z̄), where g is given in (1.4). Henceforth, each of these types
of maps will be considered to be a Möbius map. For more details on Möbius maps
we refer the reader to [2] and [13].

3. Cross-ratios

In this section we take a closer look at cross-ratios. First consider points in
C∞. Then the cross-ratio [a, b, c, d] is defined by (1.3) whenever a, b, c and d are
distinct. If these points are not distinct, then the value of the cross-ratio is defined
(by continuity) if and only if no three of the points a, b, c and d coincide. Explicitly,

(1) [a, b, c, d] = 0 if and only if a = c or b = d (or both);
(2) [a, b, c, d] = 1 if and only if a = b or c = d (or both);
(3) [a, b, c, d] =∞ if and only if a = d or b = c (or both).

Likewise, in all dimensions the absolute cross-ratio is defined whenever a, b, c and d
are distinct. When they are not distinct, similar statements to (1) and (3) hold, but
there is no statement corresponding to (2) (because, for example, |i, 1, 0,∞| = 1).

We shall now describe some geometric properties of cross-ratios. First, in Lemma
3.1 we give a geometric characterization of quadruples of points in Rn∞ with absolute
cross-ratio equal to one. In Lemma 3.2, we give a geometric characterization of
quadruples of points in R1

∞ with cross-ratio equal to −1, and in Lemma 3.3 we give
a condition for three geodesics in the hyperbolic plane to be concurrent. Finally, in
Lemma 3.4, we give a sufficient condition (in terms of cross-ratios) for a function
to be injective.

Given two points a and b in Rn∞, there is a unique pencil of spheres each of which
has a and b as inverse points. These are called the Apollonius spheres determined by
a and b, and we denote this pencil of spheres byA(a, b). Of course,A(a, b) = A(b, a),
and A(a,∞) consists of all Euclidean spheres with center a. If a, b ∈ Rn, then
A(a, b) consists of the spheres given by

|x− a|
|x− b| = k,

where 0 < k < +∞. For k 6= 1 this is a Euclidean sphere, while for k = 1 it is
the hyperplane, which we denote by ⊥ (a, b), that is, the perpendicular bisector of
the segment [a, b]. Each point x (other than a and b) of Rn∞ lies on exactly one of
the (non-degenerate) Apollonius spheres in A(a, b), and we denote this sphere by
Sa,b[x]. Note that for a, b ∈ Rn, Sa,b[∞] =⊥ (a, b). Since |a, b, c, d| = 1 if and only
if

|a− c|
|a− d| =

|b− c|
|b− d| ,(3.1)

the following lemma is clear.

Lemma 3.1. For distinct a, b, c and d in Rn∞, |a, b, c, d| = 1 if and only if Sc,d[a] =
Sc,d[b].
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Lemma 3.1 says that |a, b, c, d| = 1 if and only if there is a (necessarily unique)
sphere through a and b that has c and d as inverse points. If we rearrange (3.1) we
see that Sc,d[a] = Sc,d[b] if and only if Sa,b[c] = Sa,b[d]; thus there exists a sphere
S′ through a and b with inverse points c and d if and only if there exists a sphere
S′′ through c and d with inverse points a and b. Note that in these circumstances,
S′ and S′′ are orthogonal to each other (this follows easily when a = 0 and b =∞,
and it is true in general as Möbius maps are angle-preserving).

Lemma 3.2. Given distinct points a, b, c and d in R1
∞, let Ca,b and Cc,d be the

circles in C∞ with diameters [a, b] and [c, d], respectively. Then Ca,b crosses Cc,d
if and only [a, b, c, d] < 0. Further, [a, b, c, d] = −1 if and only if Ca,b and Cc,d are
orthogonal.

By invariance under Möbius maps, this result need only be verified when a = 0,
b =∞ and c = 1, and in this case it is trivially true. The geometry of geodesics in
the hyperbolic plane H = {x+iy : y > 0} is intimately connected to the cross-ratios
of their endpoints, and we now identify each geodesic γ in H with its unordered
pair of endpoints, say {a, b}, and write 〈a, b〉 for γ. Lemma 3.2 implies that the
two geodesics 〈a, b〉 and 〈c, d〉 intersect in H if and only if [a, b, c, d] < 0, and are
orthogonal if and only if [a, b, c, d] = −1. The same result holds for four points in
C∞ if we construct the geodesics in hyperbolic 3-space. The next lemma exploits
this connection still further.

Lemma 3.3. Let a, b, p, q, u and v be six distinct points in R1
∞, and suppose that

〈p, q〉 crosses 〈u, v〉 at the point ζ in H. Then a necessary and sufficient condition
for 〈a, b〉 to pass through ζ (so that the three geodesics are concurrent) is that
[u, v, p, a] [u, v, q, b] = 1.

Proof. We may assume that u = 0 and v =∞. Then (by calculation)

[u, v, p, a] [u, v, q, b] = 1 if and only if pq = ab.

Suppose now that 〈u, v〉 and 〈p, q〉 cross at the point iy, where y > 0. Then, by the
Intersecting Chord Theorem for the Euclidean circle with diameter [p, q], we have
pq = −y2. Equally, 〈a, b〉 meets 〈u, v〉 at iy if and only if ab = −y2 and the result
follows.

Next, we need to address the issue of injectivity of functions. For most maps
f : Rn∞ → Rn∞, there are points a, b, c and d for which |a, b, c, d| is defined but
|f(a), f(b), f(c), f(d)| is not (for example, if y is such that the equation f(x) = y
has three distinct solutions a, b and c, and if d is distinct from these). However, a
mild assumption about cross-ratios does imply injectivity.

Lemma 3.4. Let Ω be a region in Rn∞, and suppose that f : Ω → Rn∞ assumes
at least three values, and is such that if |a, b, c, d| 6= 0, then |f(a), f(b), f(c), f(d)|
is defined and non-zero. Then f is injective. A similar conclusion holds if 0 is
replaced by ∞.

Proof. Suppose that f(a) = f(c) for some a and c in Ω. As f assumes at least three
values we can choose b and d in Ω such that the values f(a), f(b), f(d) are distinct.
This implies that the points a, b, c, d are distinct except possibly that a = c. Now
if a 6= c, then |a, b, c, d| 6= 0 but |f(a), f(b), f(c), f(d)| = 0 which is a contradiction.
We conclude that f is injective. The corresponding statement concerning ∞ is
proved in a similar way.
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Finally, we introduce some terminology that we will use when discussing func-
tions that preserve absolute cross-ratios that are equal to 1.

Definition. We say that a function f mapping a region Ω in Rn∞ into Rn∞ has the
property A in Ω (the Apollonius property) if f is injective in Ω, and if for each
distinct a, b, c, d in Ω with |a, b, c, d| = 1 we have |f(a), f(b), f(c), f(d)| = 1. We
say that f has property A locally in Ω if each point of Ω has a neighborhood N
such that the restriction of f to N has the property A, and we emphasize that this
implies f is injective in some neighborhood of each point of Ω.

4. Maps of intervals into R1
∞

We begin by sketching the proof of Theorem 1.1 and the argument is valid
whether f acts on R1

∞ or on C∞. First, if f satisfies the two functional equations
(1.1) and (1.2), then f(−1) = f(0)− f(1) = −1, so that if [a, b, c, d] = −1, then

[f(a), f(b), f(c), f(d)] = f
(
[a, b, c, d]

)
= f(−1) = −1.

An obvious modification holds when one of the points is∞ (because the cross-ratios
are still rational expressions), so if f satisfies (1.1) and (1.2), then it preserves cross-
ratios with value −1.

Suppose now that f is injective, fixes 0, 1 and ∞, and preserves cross-ratios
with value −1. Now [c,∞, a, b] = −1 if and only if c = (a + b)/2. Thus, given
c = (a+ b)/2, we have [f(c),∞, f(a), f(b)] = −1 and hence

f

(
a+ b

2

)
=
f(a) + f(b)

2
.

If we put b = 0 we obtain f(a/2) = f(a)/2 for all a, and hence f satisfies the func-
tional equation (1.1). As [x2, 1, x,−x] = −1 we see that [f(x2), 1, f(x),−f(x)] =
−1. Writing v = f(x2), u = f(x) and noting that f(−x) = −u, we find [v, 1, u,−u]
= −1 which simplifies to v = u2. Thus for any x, f(x2) = f(x)2. If we now let
x = a + b we easily see that f also satisfies the functional equation (1.2). This
completes the proof of Theorem 1.1.

Note that in the case when f acts on R1
∞, this proof gives more. As in this case,

f(x2) = f(x)2 ≥ 0, so f(y) ≥ 0 if y ≥ 0. This and (1.1) imply that f is increasing
on R1, and as it can be shown (in the usual way) that f(r) = rf(1) = r for all
rational numbers r, it follows that f(x) = x on R1. For a similar global result and
proof, in projective geometry, see [3], pp. 32–33, where it is credited to Darboux.

The rest of this section contains a proof of the following result.

Theorem 4.1. Let Ω be an open interval in R1
∞, and let f : Ω→ R1

∞ be any map.
Then the following are equivalent:

(1) f is the restriction of some Möbius map to Ω;
(2) f preserves cross-ratios of points in Ω;
(3) f assumes at least three values and preserves absolute cross-ratios;
(4) f has the property A locally in Ω;
(5) [f(a), f(b), f(c), f(d)] = −1 when a, b, c and d are distinct points in Ω

with [a, b, c, d] = −1.

Proof. It is clear that (1) implies (5). Next, a simple modification of the argument
given above in the proof of Theorem 1.1 shows that if (5) holds, then, given any x0

in Ω, f is the restriction of some Möbius map to some neighborhood of the point
x0; we omit the details. The unique continuation property of Möbius maps now
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guarantees that (1) follows; thus we have now shown that (1) and (5) are equivalent.
The reader should note that there is no assumption in (5) that f is injective, or
continuous, or even that [f(a), f(b), f(c), f(d)] is defined when [a, b, c, d] 6= −1.

We have just seen that (1) and (5) are equivalent. It is clear that (1) implies (2),
and that (2) implies (3). Further, the implication (3) implies (4) is trivial if we use
(3) in conjunction with Lemma 3.4 which shows that f is injective on Ω. It remains
to show that (4) implies (1), so we assume now that (4) holds. Take any point x0

in R1
∞, and let N be an open interval about x0 on which f is injective. Suppose

now that a, b, c and d are distinct points in N with [a, b, c, d] = −1. As (4) holds,
we find that |f(a), f(b), f(c), f(d)| = 1, so that [f(a), f(b), f(c), f(d)] = ±1. Now
as f is injective on N , the points f(a), f(b), f(c) and f(d) are distinct and so this
cross-ratio cannot be 1 (see the remark in Section 3). It follows that the cross-ratio
is −1 so that the condition (5) holds with Ω replaced by N . As (5) implies (1) (for
any choice of Ω), we now see that f agrees with some Möbius map, say g, on N .
As this holds for any x0 in Ω we see (as before) that (1) holds. The proof is now
complete.

Theorem 4.1 shows that if f : R1
∞ → R1

∞ preserves cross-ratios, then f extends
naturally to a Möbius map that maps the upper half-plane H onto itself. Now H
is the hyperbolic plane, and R1

∞ is its boundary, so it is of interest to see how one
can give a geometric construction of the action of f as a hyperbolic isometry of H
starting from the action of f on R1

∞ alone.
Given that f : R1

∞ → R1
∞ preserves cross-ratios, it is immediate that f is

injective. As f is injective it induces a map from the space of all hyperbolic geodesics
to itself by the rule

f∗ : 〈a, b〉 7→ 〈f(a), f(b)〉.

Now take any z0 in H and choose two geodesics, say 〈p, q〉 and 〈u, v〉 that cross
at z0 in H. It follows that [u, v, p, q] < 0 (see Lemma 3.2) and so, as f preserves
cross-ratios, the geodesics 〈f(u), f(v)〉 and 〈f(p), f(q)〉 cross at some point w0. We
want to define f(z0) = w0 and to do this we need to know that w0 is independent of
the original choice of the two geodesics through z0. This, however, is an immediate
consequence of Lemma 3.3 for this implies that f∗ maps the pencil of all geodesics
through z0 to the pencil of all geodesics through w0. We have now extended f so
as to be a map of H into itself.

We now show that f is an isometry of H. Take two distinct points z1 and z2 in H,
let ` be the geodesic through z1 and z2, and let `1 and `2 be the geodesics through
z1 and z2, respectively, that are orthogonal to `. Write ` = 〈u, v〉, `1 = 〈p, q〉 and
`2 = 〈a, b〉. It follows that [u, v, p, q] = −1 and [u, v, a, b] = −1, and also

[p, q, a, b] = tanh2 1
2ρ(z1, z2),

where ρ is the hyperbolic metric in H (one only has to check this when u = 0,
v = ∞ and p = 1, in which case q = −1, a = R and b = −R, say, where R > 0).
The invariance of cross-ratios shows immediately that ρ

(
f(z1), f(z2)

)
= ρ(z1, z2).

5. Maps with the property A in Rn∞
We will characterize maps that locally have property A, but first we need a

lemma.
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Lemma 5.1. Suppose that Ω is a region in Rn∞ and that f : Ω→ Rn∞ has property
A. Then, for any sphere S with S ∩Ω 6= ∅, there is a sphere S′ with f(S∩Ω) ⊂ S′.
Also, if c and d in Ω are symmetric about S, then f(c) and f(d) are symmetric
about S′. In particular, if S0 is a sphere that is orthogonal to S at a point in Ω,
and if f(S0) ⊂ S′0, then S′0 is orthogonal to S′.

Proof. Suppose that S is a sphere in Rn∞ with S ∩Ω 6= ∅, and take any a in S ∩Ω.
Suppose that c and d in Ω are symmetric about S (such symmetric points exist
because Ω is open). Then S = Sc,d[a], and we will show that f(S) ⊂ Sf(c),f(d)[f(a)].
For any point b in S we have |a, b, c, d| = 1. Then |f(a), f(b), f(c), f(d)| = 1, so
by Lemma 3.1, f(b) ∈ Sf(c),f(d)[f(a)]. It follows that f maps S into S′, where
S′ = Sf(c),f(d)[f(a)], and that f(c), f(d) are symmetric about S′. Finally, suppose
that the sphere S0 is orthogonal to S, and select points c and d on S0 that are
symmetric with respect to S. As f(c) and f(d) are symmetric with respect to S′

every sphere through these two points, and in particular S′0, is orthogonal to S′.

Theorem 5.2. Suppose that Ω is a region in Rn∞, and that f : Ω → Rn∞ has
property A locally in Ω. Then f is the restriction to Ω of some element in Mn.

First, we recall that f is Möbius if it is locally Möbius; thus, it suffices to establish
the conclusion of Theorem 5.2 in some neighborhood of each point of Ω. The proof
of Theorem 5.2 is by induction on n, and we already know that the conclusion
is true when n = 1 for this is Theorem 4.1. We suppose now that it is true for
n = k, and for all regions Ω in Rk∞, and consider a region Ω in Rk+1

∞ and a function
f : Ω→ Rk+1

∞ that has property A locally in Ω.

Lemma 5.3. Given that the induction hypothesis holds when n = k, suppose that
Ω is a region in Rk+1

∞ , and that f : Ω → Rk+1
∞ has property A locally in Ω. Then,

for every sphere S contained in Ω, there is a Möbius g (depending on S) in Mn+1

such that f = g on S. In particular, the restriction of f to S is continuous on S.

The proof of Lemma 5.3. Suppose that S is a sphere contained in Ω, and that
f(S) ⊂ S′ (as in Lemma 5.1). Select Möbius maps γ and η in Mk+1 such that
γ(Rk∞) = S and η(S′) = Rk∞. It follows that the map F = η ◦ f ◦ γ is an injective
map of Rk∞ into itself that also has property A. We deduce (from the induction
hypothesis) that there is some σ in Mk such that F |Rk∞ = σ. Now σ extends to a
Möbius map of Rk+1

∞ onto itself (we continue to use σ for this map), and we find
that f |S = g|S, where g = η−1 ◦ σ ◦ γ−1 and g ∈Mk+1.

The proof of Theorem 5.2. Select a point a in Ω, and an open ball B containing a
whose closure B lies in Ω such that f has property A and is injective on B. Let
S = ∂B, and let gS be as in Lemma 5.3. Now define f1 = g−1

S ◦ f ; this satisfies
property A in Ω, is injective in B, and is the identity map on S. Moreover, by
composing this if necessary with the reflection in S, we may assume that f1(a) ∈ B.
We shall now show that f1(a) = a.

Consider the image f1(a) in B. First, we recognize that the point a is the
intersection of all hyperplanes that are orthogonal to S (and all such hyperplanes
meet Ω as B ⊂ Ω). The only other point in this intersection is, of course, ∞. If
H is one of these hyperplanes, then its image f1(H) lies on a sphere which, by
Lemma 5.1, is orthogonal to S. However, as f1 is the identity on S, we see that
f1(H ∩S) = H ∩S, and this means that f1(H) ⊂ H . We deduce that f1(a), which
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lies in B and also in the intersection of all such f1(H), must be fixed by f1; that
is, f1(a) = a.

A similar argument shows that for each x in B, f1(x) is either x, or the reflection
x∗ of x in S. Now let Σx be the unique sphere with diameter [x, a], and note that
Σx ⊂ B. Then f(Σx) is a connected set (from Lemma 5.3) that lies in the union of
Σx and its image under reflection in S. As f1(a) = a and a ∈ Σx, we deduce that
f1(Σx) ⊂ Σx, so that f1(x) ∈ B. It follows that f1(x) = x for all x in B, and hence
that f = gS throughout B. This completes the proof.

Corollary 5.4. For any f : Rn∞ → Rn∞, where n ≥ 2, the following are equivalent:
(1) f is Möbius;
(2) f assumes at least three values and preserves absolute cross-ratio;
(3) f has property A;
(4) f locally has property A.

Proof. Trivially, (1) implies (2), and (2) implies (3) because the injectivity of f
follows from Lemma 3.4. Next, (3) implies (4) is trivial, while (4) implies (1)
follows from Theorem 5.2.

6. Sphere-preserving maps in Rn∞
Circle-preserving maps have a long history that goes back to Möbius himself (see

[1], [7], and also [8], p. 109), and sometimes the function is not even required to be
measurable. For example, we have the following result (see [4], and an earlier, but
slightly weaker, result in [6], p. 309).

Theorem C. Suppose that f : D → C∞ is injective in a plane domain D, and
that f maps each circle in D onto some circle in C∞. Then there is some Möbius
map g such that f is the restriction to D of one of the maps g(z) or g(z̄).

Of course, the hypothesis in Theorem C is that [f(a), f(b), f(c), f(d)] is real
whenever [a, b, c, d] is real. We shall now show a similar result holds in all higher
dimensions.

Suppose that Ω is a region in Rn∞. A mapping f : Ω → Rn∞ is called locally
sphere preserving in Ω if each point a in Ω has a neighborhood N such that for
each sphere S in N , f |S is a bijection of S onto a sphere f(S). Note that a locally
sphere-preserving map must be locally injective. We say that f is sphere-preserving
in Ω if for each sphere S in Ω, f |S is a bijection of S onto a sphere f(S). Our main
result is as follows.

Theorem 6.1. Suppose that Ω is a region in Rn∞, where n ≥ 2, and that f : Ω→
Rn∞ is locally sphere-preserving. Then f ∈Mn.

We begin with a preliminary lemma.

Lemma 6.2. Suppose that f : Ω → Rn∞ is a sphere-preserving injection, and that
S is a sphere in Ω. If a component E of Rn∞\S is contained in Ω, then f(E) is a
component of Rn∞\f(S).

Proof. Take any a in E. There are elements γ1 and γ2 inMn such that γ1(∞) = a
and γ2(f(a)) =∞. Then F = γ2 ◦ f ◦ γ1 is a sphere-preserving injection that fixes
∞. Also, γ−1

1 (S) = T and γ2(f(S)) = F (T ) are Euclidean spheres in Rn. Note
that the exterior of T lies in the domain of F , and we will now show that F maps
the exterior of T onto the exterior of F (T ). As F is an injection, it preserves the
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cardinality of the intersection of two sets. For a in T , let Ha denote the hyperplane
tangent to T at a (hence F is defined on Ha). Then F (Ha) is a hyperplane tangent
to F (T ) at F (a), so F maps Ha\{a} into the exterior of F (T ). Because every point
in the exterior of T is contained in some hyperplane tangent to T , we conclude that
F maps the exterior of T into the exterior of F (T ). Since F is a bijection of T onto
F (T ), {F (Ha) : a ∈ T } is the family of all hyperplanes tangent to the sphere F (T ).
Therefore, the union of these hyperplanes is the union of F (T ) and its exterior.
Thus, F maps the exterior of T onto the exterior of F (T ) and this completes the
proof.

The proof of Theorem 6.1. It suffices to prove that f is locally Möbius. The proof
will be by induction, but we first establish some general properties of sphere-
preserving maps. The first step is to reduce consideration to a normalized situ-
ation, and with this in mind we let En be the exterior of the closed ball with center
(0, . . . , 0,−2) and radius 1.

Given a ∈ Ω, there is an open ball Ba containing a such that the restriction of
f to Ba is sphere-preserving and injective. Now, there is some γ1 inMn such that
γ1(En) = Ba and γ1(0) = a. Then f ◦ γ1 is a sphere-preserving map of En into
Rn∞, so that f ◦ γ1(Rn−1

∞ ) is a sphere in Rn∞. Hence, there exists some γ2 in Mn

such that F : En → Rn∞ defined by F = γ2 ◦ f ◦ γ1 is a sphere-preserving injection
that leaves Rn−1 invariant. If Σ is a sphere in the half-space xn > 0, then F (Σ)
is connected (it is a sphere) and it does not meet Rn∞ (= F (Rn∞)) because of the
injectivity of F . It follows that F maps this upper half-space into itself, or into the
lower half-space, and by composing F with reflection in Rn∞ if necessary, we may
also assume that F leaves the half-space xn > 0 invariant. The proof of Theorem
6.1 will be complete if we show F is Möbius in a neighborhood of the origin, and
the proof is by induction starting with n = 2.

We now establish the theorem when n = 2. Of course, the case n = 2 is Theorem
C, but our proof is shorter than the proof of Theorem C in [4] and in any case, our
argument is needed for the general inductive case. We employ complex notation,
so that F : E2 → C∞ is a circle preserving injection into C∞ that leaves the upper
half-plane invariant. By composing F with a real Möbius map, we may also assume
that F fixes 0, 1 and ∞. Take any point z0 = x0 + iy0 in the upper half-plane and
construct the circle C with diameter [x0, z0], and the horizontal tangent line L to
C at z0. Because of the injectivity, the sphere-preserving property, and the fixed
point ∞ of F , we see that F (L) is a horizontal line (tangent to R at ∞) that is
tangent to F (C) at F (z0). This implies that F (x0) and F (z0) have the same real
part, and hence that we can write

F (x0 + iy0) = F (x0) + iϕ(y0),(6.1)

for some function ϕ that maps (0,+∞) into itself. We should note that in this
construction, ϕ may appear to depend on x0 but it does not, for we can apply
this same argument simultaneously to all circles that have L and R as horizontal
tangents. Note also that exactly the same argument holds for circles tangent to,
but below, R providing only that their diameter is less than 1.

Now consider a circle C of radius less than 1 whose center x0 is in R. Let
the vertical diameter of C be [z0, z̄0], where z0 = x0 + iy0. Next, construct the
two circles C+ and C− with diameters [x0, z0] and [x0, z̄0], respectively, and apply
the arguments given above. As the injectivity implies that tangency is preserved
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by F , we see immediately that F maps the center of C to the center of F (C).
Algebraically, this implies that if a, b ∈ [−1, 1], then (by considering the circle with
diameter [a, b])

F

(
a+ b

2

)
=
F (a) + F (b)

2
.

As in Section 4, this implies that F (r) = r for all rational numbers r in [−1, 1].
For all rational r and s with −1 ≤ r < s ≤ 1, F maps the circle with diameter
[r, s] onto itself since F fixes both the center and the points r and s, and also the
interior of this circle onto itself (by Lemma 6.2 and the fact that F fixes ∞). This
implies that if r < x < s, then r < F (x) < s, and consequently that F (x) = x for
all x ∈ [−1, 1].

To complete the proof when n = 2 we show that F is the identity function on
the square {z = x + iy : |x| < 1, |y| < 1}. We know (from (6.1) and the previous
paragraph) that

F (x+ iy) = F (x) + iϕ(y) = x+ iϕ(y),

and that φ(y) has the same sign as y. Consider the circle C with center at the origin
and radius |y|. Since F (C) = C, we conclude ϕ(y) = y, and hence that F (z) = z
on the square. This completes the proof when n = 2.

Finally, we consider the inductive step and this is slightly easier. We suppose
that the result is true when n = k and consider the case when n = k + 1. We may
restrict our attention to the normalized situation described before we began the
proof for the case n = 2, but now, because of the induction hypothesis, we know
that the restriction of F to Rk∞ is some σ in Mk. As σ extends to an element of
Mk+1 that preserves the half-space xk+1 > 0, we may combine F and σ−1 and so
assume that the restriction of F to Rk∞ is the identity map. The same arguments
as those given above readily show that if x0 ∈ Rk and ek+1 is the usual basis vector
(0, . . . , 0, 1) (with k + 1 entries), then F (x0 + y0ek+1) = x0 + ψ(y0)ek+1, for some
suitable function ψ. The proof now continues exactly as above to show that F is
now the identity in some neighborhood of the origin. This completes the proof.

Corollary 6.3. Suppose that n ≥ 2. For any f : Rn∞ → Rn∞, the following are
equivalent.

(1) f is Möbius;
(2) the restriction of f to every sphere is Möbius;
(3) f is sphere-preserving and bijective;
(4) f is sphere-preserving and injective;
(5) f is locally sphere-preserving.

Proof. The implications (1) implies (2), (1) implies (3), (2) implies (4), (3) implies
(4), and (4) implies (5) are all trivial. Finally, the implication (5) implies (1) follows
from Theorem 6.1.
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[4] Carathéodory, C., The most general transformations of plane regions which transform circles
into circles, Bull. Amer. Math. Soc. 43 (1937), 573-579.

[5] Chubarev, A. and Pinelis, I., Fundamental Theorem of geometry without the 1-to-1 assump-
tion, Proc. Amer. Math. Soc. 127 (1999), 2735-2744. MR 99m:51002

[6] Coolidge, J.L., A treatise on the circle and the sphere, Chelsea, 1971 (reprinted from Oxford,
1916). MR 52:10346

[7] Coxeter, H.S.M., Similarities and conformal transformations, Annali di Matematica pura ed
applicata 53 (1961), 165-172. MR 26:648

[8] Coxeter, H.S.M., Introduction to Geometry, Wiley, 1969. MR 49:11369
[9] Haruki, H. and Rassias, T.M., A new characteristic of Möbius transformations by use of
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