A Bernstein type theorem for minimal volume preserving maps
HTML articles powered by AMS MathViewer
- by Lei Ni
- Proc. Amer. Math. Soc. 130 (2002), 1207-1210
- DOI: https://doi.org/10.1090/S0002-9939-01-06448-6
- Published electronically: November 9, 2001
- PDF | Request permission
Abstract:
We show that any minimal volume preserving map from the Euclidean plane into itself is a linear diffeomorphism. We derive this from a similar result on minimal diffeomorphisms. We also show that the classical Bernstein theorem on minimal graphs is a corollary of our result.References
- F. J. Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277–292. MR 200816, DOI 10.2307/1970520
- S. Bernstein, Sur un theoreme de geometrie et ses applications aux equations aux derivees partielle du type elliptique, Comm. de la Soc. Math de Kharkov 15(1915-17), 38–45.
- E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268. MR 250205, DOI 10.1007/BF01404309
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI 10.1002/cpa.3160330206
- Hirotaka Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, J. Differential Geom. 29 (1989), no. 2, 245–262. MR 982173
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Robert Osserman, A survey of minimal surfaces, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969. MR 0256278
- Richard M. Schoen, The role of harmonic mappings in rigidity and deformation problems, Complex geometry (Osaka, 1990) Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 179–200. MR 1201611
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
- Neil S. Trudinger and Xu-Jia Wang, The Bernstein problem for affine maximal hypersurfaces, Invent. Math. 140 (2000), no. 2, 399–422. MR 1757001, DOI 10.1007/s002220000059
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- Jon G. Wolfson, Minimal Lagrangian diffeomorphisms and the Monge-Ampère equation, J. Differential Geom. 46 (1997), no. 2, 335–373. MR 1484047
Bibliographic Information
- Lei Ni
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- MR Author ID: 640255
- Email: lni@math.stanford.edu
- Received by editor(s): August 18, 2000
- Published electronically: November 9, 2001
- Additional Notes: This research was partially supported by an NSF grant.
- Communicated by: Bennett Chow
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1207-1210
- MSC (2000): Primary 58E20
- DOI: https://doi.org/10.1090/S0002-9939-01-06448-6
- MathSciNet review: 1873798