Immersions of surfaces in almost-complex 4-manifolds

Author:
Christian Bohr

Journal:
Proc. Amer. Math. Soc. **130** (2002), 1523-1532

MSC (1991):
Primary 57M99, 53C15

DOI:
https://doi.org/10.1090/S0002-9939-01-06185-8

Published electronically:
October 5, 2001

MathSciNet review:
1879979

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate the relation between double points and complex points of immersed surfaces in almost-complex 4-manifolds and show how estimates for the minimal genus of embedded surfaces lead to inequalities between the number of double points and the number of complex points of an immersion.

**[BPV]**W. Barth, C. Peters, A. van de Ven,*Compact complex surfaces*, Springer-Verlag, 1987. MR**86c:32026****[B1]**C. Bohr,*Embedded surfaces and almost complex structures*, Proc. Amer. Math. Soc.**128**no. 7, (2000), 2147-2154. MR**2000m:57051****[B2]**C. Bohr,*Embedded surfaces and the intersection forms of non-simply connected 4-manifolds*, Ph.D. thesis, University of Munich (2000).**[CG]**M. Chkhenkeli, T. Garrity,*Intersection form and CR geometry for four-manifolds: the Kirby-Lai adjunction formula*, Preprint, math.DG/9904007.**[FS]**R. Fintushel, R. Stern,*Immersed spheres in -manifolds and the immersed Thom conjecture*, Turkish J. Math.**19**(1995), 145-157. MR**96j:57036****[Gi]**P.M. Gilmer,*Configurations of surfaces in 4-manifolds*, Trans. Amer. Math. Soc.**264**(1981), 353-380. MR**83h:57027****[KeM]**M. Kervaire, J. Milnor,*On 2-spheres in 4-manifolds*, Proc. Nat. Acad. Sci. USA**47**(1961), 1651-1657. MR**24:A2968****[KM]**P.B. Kronheimer, T.S. Mrowka,*The genus of embedded surfaces in the complex projective plane*, Math. Res. Lett.**1**(1994), 797-808. MR**96a:57073****[Lai]**H.F. Lai,*Characteristic classes of real manifolds immersed in complex manifolds*, Trans. Amer. Math. Soc.**172**(1972), 1-33. MR**47:2618****[La]**T. Lawson,*The minimal genus problem*, Exposition. Math.**15**(1997), 385-431. MR**98g:57055****[LL]**T.J. Li, A. Liu,*Symplectic structures on ruled surfaces and a generalized adjunction formula*, Math. Res. Lett.**2**(1995), 453-471. MR**96m:57052****[Ro]**V.A. Rokhlin,*Two-dimensional submanifolds of four-dimensional manifolds*, Funct. Anal. Appl.**5**(1971), p. 39-48.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
57M99,
53C15

Retrieve articles in all journals with MSC (1991): 57M99, 53C15

Additional Information

**Christian Bohr**

Affiliation:
Department of Mathematics, Yale University, P.O. Box 208283, New Haven, Connecticut 06520–8283

Address at time of publication:
Mathematisches Institut, Theresienstrasse 39, 80333 Muenchen, Germany

Email:
bohr@math.yale.edu, bohr@rz.mathematik.uni-muenchen.de

DOI:
https://doi.org/10.1090/S0002-9939-01-06185-8

Received by editor(s):
September 8, 2000

Received by editor(s) in revised form:
November 1, 2000

Published electronically:
October 5, 2001

Additional Notes:
The author was supported by the Graduiertenkolleg “Mathematik im Bereich ihrer Wechselwirkung mit der Physik” at the University of Munich

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 2001
American Mathematical Society