## Evaluations of initial ideals and Castelnuovo-Mumford regularity

HTML articles powered by AMS MathViewer

- by Ngô Viêt Trung PDF
- Proc. Amer. Math. Soc.
**130**(2002), 1265-1274 Request permission

## Abstract:

This paper characterizes the Castelnuovo-Mumford regularity by evaluating the initial ideal with respect to the reverse lexicographic order.## References

- A. Aramova and J. Herzog, Almost regular sequences and Betti numbers, Amer. J. Math. 122 (2000), no. 4, 689–719.
- Dave Bayer, Hara Charalambous, and Sorin Popescu,
*Extremal Betti numbers and applications to monomial ideals*, J. Algebra**221**(1999), no. 2, 497–512. MR**1726711**, DOI 10.1006/jabr.1999.7970 - Dave Bayer and David Mumford,
*What can be computed in algebraic geometry?*, Computational algebraic geometry and commutative algebra (Cortona, 1991) Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1–48. MR**1253986** - David Bayer and Michael Stillman,
*A criterion for detecting $m$-regularity*, Invent. Math.**87**(1987), no. 1, 1–11. MR**862710**, DOI 10.1007/BF01389151 - Isabel Bermejo and Philippe Gimenez,
*On Castelnuovo-Mumford regularity of projective curves*, Proc. Amer. Math. Soc.**128**(2000), no. 5, 1293–1299. MR**1646319**, DOI 10.1090/S0002-9939-99-05184-9 - Winfried Bruns and Jürgen Herzog,
*On multigraded resolutions*, Math. Proc. Cambridge Philos. Soc.**118**(1995), no. 2, 245–257. MR**1341789**, DOI 10.1017/S030500410007362X - Laurence Coudurier and Marcel Morales,
*Classification des courbes toriques dans l’espace projectif, module de Rao et liaison*, J. Algebra**211**(1999), no. 2, 524–548 (French). MR**1666657**, DOI 10.1006/jabr.1998.7739 - David Eisenbud and Shiro Goto,
*Linear free resolutions and minimal multiplicity*, J. Algebra**88**(1984), no. 1, 89–133. MR**741934**, DOI 10.1016/0021-8693(84)90092-9 - L.T. Hoa and N.V. Trung, On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals, Math. Z. 229 (1998), 519-537.
- Sam Perlis,
*Maximal orders in rational cyclic algebras of composite degree*, Trans. Amer. Math. Soc.**46**(1939), 82–96. MR**15**, DOI 10.1090/S0002-9947-1939-0000015-X - Peter Schenzel, Ngô Viêt Trung, and Nguyễn Tụ’ Cu’ò’ng,
*Verallgemeinerte Cohen-Macaulay-Moduln*, Math. Nachr.**85**(1978), 57–73 (German). MR**517641**, DOI 10.1002/mana.19780850106 - N.V. Trung, Reduction exponent and degree bounds for the defining equations of a graded ring, Proc. Amer. Math. Soc. 102 (1987), 229-236.
- Ngô Viêt Trung,
*Gröbner bases, local cohomology and reduction number*, Proc. Amer. Math. Soc.**129**(2001), no. 1, 9–18. MR**1695103**, DOI 10.1090/S0002-9939-00-05503-9 - Wolmer V. Vasconcelos,
*Cohomological degrees of graded modules*, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 345–392. MR**1648669**

## Additional Information

**Ngô Viêt Trung**- Affiliation: Institute of Mathematics, Box 631, Bò Hô, Hanoi, Vietnam
- MR Author ID: 207806
- Email: nvtrung@hn.vnn.vn
- Received by editor(s): May 19, 2000
- Received by editor(s) in revised form: October 29, 2000
- Published electronically: October 5, 2001
- Additional Notes: The author was partially supported by the National Basic Research Program of Vietnam.
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**130**(2002), 1265-1274 - MSC (1991): Primary 13D02, 13P10
- DOI: https://doi.org/10.1090/S0002-9939-01-06216-5
- MathSciNet review: 1879946