ON THE CLASS NUMBER OF CERTAIN IMAGINARY QUADRATIC FIELDS

J. H. E. COHN

(Communicated by David E. Rohrlich)

Abstract. Theorem. Let \(n > 2 \) denote an integer, \(D \) the square-free part of \(2^n - 1 \) and \(h \) the class number of the field \(\mathbb{Q}[\sqrt{-D}] \). Then except for the case \(n = 6 \), \(n - 2 \) divides \(h \).

Theorem. Let \(n > 2 \) denote an integer, \(D \) the square-free part of \(2^n - 1 \) and \(h \) the class number of the field \(\mathbb{Q}[\sqrt{-D}] \). Then except for the case \(n = 6 \), \(n - 2 \) divides \(h \).

This generalises Theorem 5.3 of \[2\], which derives the same conclusion under the restrictions that \(n - 2 \) be squarefree and coprime to 6, and provides a new proof of the result in \[1\] that for each \(g \) there are infinitely many imaginary quadratic fields whose class number is divisible by \(g \).

Proof. Here the Diophantine Equation \(2^n - 1 = Da^2 \) has at least one solution, with \(a \) odd and \(D \equiv 7 \pmod{8} \); in particular \(D \geq 7 \) and so the only units in the field are \(\pm 1 \). Thus in the field we obtain \(\left(\frac{1}{2}(1 + a\sqrt{-D})\right)\left(\frac{1}{2}(1 - a\sqrt{-D})\right) = 2^{n-2} \) where the ideal \(\left[\frac{1}{2}(1 + a\sqrt{-D})\right] \) and its conjugate are coprime; thus \(\left(\frac{1}{2}(1 + a\sqrt{-D})\right) = \pi^{n-2} \) for an ideal \(\pi \) having norm 2. Let \(\lambda = (h, n-2) \) with \(h = \lambda \mu, n-2 = \lambda \nu \) and \((\mu, \nu) = 1 \).

Since the ideal \(\pi^h \) is principal, it follows that \(\left(\frac{1}{2}(1 + a\sqrt{-D})\right)^{\mu} = \pi^{\lambda \nu} = (\pi^h)^{\nu} = [\delta]^\nu \) for some algebraic integer \(\delta \) in the field, and so \(\left(\frac{1}{2}(1 + a\sqrt{-D})\right)^{\mu} = \pm \delta^{\nu} \). In view of \((\mu, \nu) = 1 \), it then follows that \(\frac{1}{2}(1 + a\sqrt{-D}) = \pm \gamma^{\nu} \) for some other algebraic integer in the field, \(\gamma \). It merely remains to show that \(\nu = 1 \), for then \(n - 2 = \lambda \mu = h \).

We show first that \(\nu \) has no odd prime factor \(p \), for otherwise we should find, absorbing the \(\pm \) sign into the right-hand side, that for some odd rational integers \(\alpha \) and \(\beta, \frac{1}{2}(1 + a\sqrt{-D}) = (\frac{1}{2}(\alpha + \beta\sqrt{-D}))^p \), and then equating real parts gives

\[
2^{p-1} = \alpha \sum_{r=0}^{\frac{p-1}{2}} \binom{p}{2r} \alpha^{p-2r-1}(-D\beta^2)^r.
\]

This would imply \(\alpha = \pm 1 \) and then \(\pm 2^{p-1} = \sum_{r=0}^{\frac{p-1}{2}} \binom{p}{2r}(-D\beta^2)^r \), with the lower sign rejected modulo \(p \). Thus \(2^{p-1} = \frac{1}{2}((1 + \sqrt{-D})^p + (1 - \sqrt{-D})^p) = f_p(x) \),

Received by the editors October 31, 2000.
2000 Mathematics Subject Classification. Primary 11R29; Secondary 11D61, 11B37, 11B39.

\(\odot2001 \) American Mathematical Society

1275
say, where \(x = 1 + D\beta^2 \equiv 0 \pmod{8} \), and we show that this is impossible for any odd integer \(p \), by showing that for each odd \(k \geq 3 \)

\[
\left(1 + \sqrt{1 - x} \right)^2 + \left(1 - \sqrt{1 - x} \right)^2 = 4 - 2x \quad \text{and} \quad \left(1 + \sqrt{1 - x} \right)^2 \left(1 - \sqrt{1 - x} \right)^2 = x^2,
\]
we obtain the recurrence relation \(f_{k+4}(x) = (4 - 2x)f_{k+2}(x) - x^2 f_k(x) \) with the values \(f_3(x) = 4 - 3x \) and \(f_5(x) = 16 - 20x + 5x^2 \). Thus (1) holds for these values since \(8 \mid x \), and we proceed to prove it by induction for larger \(k \). If it holds for odd values \(t \) and \(t + 2 \), then

\[
f_{t+4}(x) = (4 - 2x)f_{t+2}(x) - x^2 f_t(x)
= (4 - 2x)(2^{t+1} - (t + 2)x \cdot 2^{t-1} + Ax \cdot 2^{t-2})
= x^2(2^{t+1} - tx \cdot 2^{t-3} + Bx \cdot 2^{t-2})
= 2^{t+3} - (t + 4)x \cdot 2^{t+1} + Cx \cdot 2^{t-1},
\]
say, where \(C = A + \frac{3}{4}(t + 2) - \frac{4}{15}Ax - \frac{1}{7}x^2 + \frac{1}{12}tx^2 - \frac{1}{15}Bx^2 \) is an integer.

Thus \(\nu \) has no odd prime factor. Finally suppose that \(2 \mid \nu \). Then we obtain that \(\pm 2(1 + a\sqrt{-D}) = (\alpha + \beta\sqrt{-D})^2 \), since now the unit \(\pm 1 \) can no longer be absorbed into the power. Then \(\pm 2 = \alpha^2 - D\beta^2, \pm \alpha = \alpha\beta \). But since \(D \equiv 7 \pmod{8} \) we must reject the lower sign in the former, and then find

\[
2^n = 1 + Da^2 = 1 + D\alpha^2 \beta^2 = \alpha^4 - 2\alpha^2 + 1 = (\alpha^2 - 1)^2
\]
and so \((\alpha + 1)(\alpha - 1) = 2^k \) whence for some integers \(i > j, \alpha + 1 = 2^i, \alpha - 1 = 2^j, 2 = 2^i - 2^j \), yielding only \(i = 2, j = 1, \alpha = 3 \), leading to \(n = 6 \) and \(D = 7 \) as required.

The author wishes to express his appreciation to the referee for providing the references, and for suggesting an improvement in the exposition.

A table showing the first few values of \(h/(n - 2) \) is given in Table 1.
REFERENCES

DEPARTMENT OF MATHEMATICS, ROYAL HOLLOWAY UNIVERSITY OF LONDON, EGHAM, SURREY TW20 0EX, UNITED KINGDOM

E-mail address: J.Cohn@rhul.ac.uk