The range of operators on von Neumann algebras
HTML articles powered by AMS MathViewer
- by Teresa Bermúdez and N. J. Kalton
- Proc. Amer. Math. Soc. 130 (2002), 1447-1455
- DOI: https://doi.org/10.1090/S0002-9939-01-06292-X
- Published electronically: October 24, 2001
- PDF | Request permission
Abstract:
We prove that for every bounded linear operator $T:X\to X$, where $X$ is a non-reflexive quotient of a von Neumann algebra, the point spectrum of $T^*$ is non-empty (i.e., for some $\lambda \in \mathbb C$ the operator $\lambda I-T$ fails to have dense range). In particular, and as an application, we obtain that such a space cannot support a topologically transitive operator.References
- Shamim I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), no. 2, 384–390. MR 1469346, DOI 10.1006/jfan.1996.3093
- Luis Bernal-González, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (1999), no. 4, 1003–1010. MR 1476119, DOI 10.1090/S0002-9939-99-04657-2
- Juan Bès and Alfredo Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), no. 1, 94–112. MR 1710637, DOI 10.1006/jfan.1999.3437
- José Bonet and Alfredo Peris, Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal. 159 (1998), no. 2, 587–595. MR 1658096, DOI 10.1006/jfan.1998.3315
- Kit C. Chan, Hypercyclicity of the operator algebra for a separable Hilbert space, J. Operator Theory 42 (1999), no. 2, 231–244. MR 1716973
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, DOI 10.1090/S0273-0979-99-00788-0
- J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), no. 4, 325–330. MR 482086, DOI 10.1007/BF02760638
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- Stefan Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104. MR 552464, DOI 10.1515/crll.1980.313.72
- Domingo A. Herrero, Hypercyclic operators and chaos, J. Operator Theory 28 (1992), no. 1, 93–103. MR 1259918
- C. Kitai, Invariant Closed Sets for Linear Operators, Ph.D. thesis, Univ. of Toronto, 1982.
- Robert E. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics, vol. 183, Springer-Verlag, New York, 1998. MR 1650235, DOI 10.1007/978-1-4612-0603-3
- A. Montes-Rodríguez and C. Romero-Moreno, Supercyclicity in the operator algebra, preprint.
- H. Pfitzner, Weak compactness in the dual of a $C^\ast$-algebra is determined commutatively, Math. Ann. 298 (1994), no. 2, 349–371. MR 1256621, DOI 10.1007/BF01459739
- Haskell P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36. MR 270122, DOI 10.4064/sm-37-1-13-36
- Saharon Shelah, A Banach space with few operators, Israel J. Math. 30 (1978), no. 1-2, 181–191. MR 508262, DOI 10.1007/BF02760838
- Saharon Shelah and Juris Steprāns, A Banach space on which there are few operators, Proc. Amer. Math. Soc. 104 (1988), no. 1, 101–105. MR 958051, DOI 10.1090/S0002-9939-1988-0958051-9
- Masamichi Takesaki, On the conjugate space of operator algebra, Tohoku Math. J. (2) 10 (1958), 194–203. MR 100799, DOI 10.2748/tmj/1178244713
- P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. MR 1144277, DOI 10.1017/CBO9780511608735
Bibliographic Information
- Teresa Bermúdez
- Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Canary Islands, Spain
- Email: tbermude@ull.es
- N. J. Kalton
- Affiliation: Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211-0001
- Email: nigel@math.missouri.edu
- Received by editor(s): November 20, 2000
- Published electronically: October 24, 2001
- Additional Notes: The first author was supported by DGICYT Grant PB 97-1489 (Spain)
The second author was supported by NSF grant DMS-9870027 - Communicated by: Joseph A. Ball
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1447-1455
- MSC (2000): Primary 47A16, 47C15
- DOI: https://doi.org/10.1090/S0002-9939-01-06292-X
- MathSciNet review: 1879968