Semigroups of mappings with rigid Lipschitz constant
HTML articles powered by AMS MathViewer
- by Enrique Llorens-Fuster
- Proc. Amer. Math. Soc. 130 (2002), 1407-1412
- DOI: https://doi.org/10.1090/S0002-9939-01-06333-X
- Published electronically: October 5, 2001
- PDF | Request permission
Abstract:
It is shown that two well-known uniformly fixed point free lipschitzian semigroups of mappings have minimal Lipschitz constant on the positive part of the unit ball of $\ell _2$. This implies that a question raised by T. Kuczumow has a negative answer.References
- J.-B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach. I, II, Séminaire d’Analyse Fonctionnelle (1978–1979), École Polytech., Palaiseau, 1979, pp. Exp. No. 7-8, 45 (French). MR 557363
- P. N. Dowling and C. J. Lennard, Every nonreflexive subspace of $L_1[0,1]$ fails the fixed point property, Proc. Amer. Math. Soc. 125 (1997), no. 2, 443–446. MR 1350940, DOI 10.1090/S0002-9939-97-03577-6
- J. García-Falset, A. Jiménez-Melado, and E. Lloréns-Fuster, Isomorphically expansive mappings in $l_2$, Proc. Amer. Math. Soc. 125 (1997), no. 9, 2633–2636. MR 1389518, DOI 10.1090/S0002-9939-97-03845-8
- Kazimierz Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005, DOI 10.1017/CBO9780511526152
- Goebel, K., Kirk W.A. and Thele, R.L., A fixed point theorem for mappings whose iterate have uniform Lipschitz constant, Studia Math. XLVII, (1973), 135-140.
- Goebel, K., Kirk W.A. and Thele, R.L., Uniformly Lipschitzian semigroups in Hilbert space, Canad. J. Math. 26 (1974), 1245-1256.
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- E. A. Lifšic, A fixed point theorem for operators in strongly convex spaces, Voronež. Gos. Univ. Trudy Mat. Fak. Vyp. 16 Sb. Stateĭ po Nelineĭnym Operator. Uravn. i Priložen. (1975), 23–28 (Russian). MR 0477901
- Teck Cheong Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), no. 1, 135–143. MR 599326, DOI 10.2140/pjm.1980.90.135
- Llorens-Fuster, E. Renorming and minimal Lipschitz constants, Nonlinear Analysis, 47 (4), (2001), 2719–2730.
- Tadeusz Kuczumow, Opial’s modulus and fixed points of semigroups of mappings, Proc. Amer. Math. Soc. 127 (1999), no. 9, 2671–2678. MR 1486740, DOI 10.1090/S0002-9939-99-04805-4
- A. S. Veksler, The maximal ergodic theorem in Orlicz spaces, Tashkent. Gos. Univ. Sb. Nauchn. Trudov 689 (1982), 15–18 (Russian). MR 720529
Bibliographic Information
- Enrique Llorens-Fuster
- Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Baton 46100 Burjassot, Valencia, Spain
- Email: enrique.llorens@uv.es
- Received by editor(s): November 17, 2000
- Published electronically: October 5, 2001
- Additional Notes: The author was supported in part by a Grant from MCYT, BFM2000-0344-C02-02.
- Communicated by: Jonathan M. Borwein
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1407-1412
- MSC (2000): Primary 47H10; Secondary 46B03, 46B20
- DOI: https://doi.org/10.1090/S0002-9939-01-06333-X
- MathSciNet review: 1879964