From $K(n+1)_*(X)$ to $K(n)_*(X)$
HTML articles powered by AMS MathViewer
- by Norihiko Minami
- Proc. Amer. Math. Soc. 130 (2002), 1557-1562
- DOI: https://doi.org/10.1090/S0002-9939-01-06374-2
- Published electronically: October 12, 2001
- PDF | Request permission
Abstract:
Let $X$ be a space of finite type. Set $q=2(p-1)$ as usual, and define the mod $q$ support of $K(n)^*(X)$ by $S(X,K(n)) = \{ m \in \mathbb {Z}/q\mathbb {Z} \mid \bigoplus _{d \equiv m \bmod q}\ K(n)^d \neq 0 \}$ for $n>0.$ Call $K(n)^*(X)$ sparse if there is no $m \in \mathbb {Z}/q\mathbb {Z}$ with $m, m+1 \in S(X,K(n)).$
Then we show the relation $S(X,K(n)) \subseteqq S(X,K(n+1))$ for any finite type space $X$ with $K(n+1)^*(X)$ being sparse.
As a special case, we have $K(n+1)^{odd}(X) = 0 \Longrightarrow K(n)^{odd}(X) = 0,$ and the main theorem of Ravenel, Wilson and Yagita is also generalized in terms of the mod $q$ support.
References
- J. Michael Boardman, Stable operations in generalized cohomology, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 585–686. MR 1361899, DOI 10.1016/B978-044481779-2/50015-8
- J. Michael Boardman, David Copeland Johnson, and W. Stephen Wilson, Unstable operations in generalized cohomology, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 687–828. MR 1361900, DOI 10.1016/B978-044481779-2/50016-X
- A. K. Bousfield, On $K(n)$-equivalence of spaces, Contemp. Math. 239 (1999), 85–89.
- Mark Hovey, Cohomological Bousfield classes, J. Pure Appl. Algebra 103 (1995), no. 1, 45–59. MR 1354066, DOI 10.1016/0022-4049(94)00096-2
- Mark Hovey, Bousfield localization functors and Hopkins’ chromatic splitting conjecture, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 225–250. MR 1320994, DOI 10.1090/conm/181/02036
- Igor Kriz, Morava $K$-theory of classifying spaces: some calculations, Topology 36 (1997), no. 6, 1247–1273. MR 1452850, DOI 10.1016/S0040-9383(96)00049-3
- Igor Kriz and Kevin P. Lee, Odd-degree elements in the Morava $K(n)$ cohomology of finite groups, Topology Appl. 103 (2000), no. 3, 229–241. MR 1758436, DOI 10.1016/S0166-8641(99)00031-0
- N. Minami, On the chromatic tower, in preparation.
- Douglas C. Ravenel, W. Stephen Wilson, and Nobuaki Yagita, Brown-Peterson cohomology from Morava $K$-theory, $K$-Theory 15 (1998), no. 2, 147–199. MR 1648284, DOI 10.1023/A:1007776725714
- W. Stephen Wilson, $K(n+1)$ equivalence implies $K(n)$ equivalence, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 375–376. MR 1718090, DOI 10.1090/conm/239/03611
- Nobuaki Yagita, The exact functor theorem for $\textrm {BP}_\ast /I_{n}$-theory, Proc. Japan Acad. 52 (1976), no. 1, 1–3. MR 394631
- Zen-ichi Yosimura, Projective dimension of Brown-Peterson homology with modulo $(p,v_{1},\dots , v_{n-1})$ coefficients, Osaka Math. J. 13 (1976), no. 2, 289–309. MR 415603
Bibliographic Information
- Norihiko Minami
- Affiliation: Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Email: norihiko@math.kyy.nitech.ac.jp
- Received by editor(s): November 20, 2000
- Published electronically: October 12, 2001
- Additional Notes: This research was partially supported by Grant-in-Aid for Scientific Research No. 11640072, Japan Society for the Promotion of Science
- Communicated by: Ralph Cohen
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1557-1562
- MSC (2000): Primary 55N15, 55N20, 55N22; Secondary 55Q51, 55R35
- DOI: https://doi.org/10.1090/S0002-9939-01-06374-2
- MathSciNet review: 1879983