Proof of the prime power conjecture for projective planes of order $n$ with abelian collineation groups of order $n^2$
HTML articles powered by AMS MathViewer
- by Aart Blokhuis, Dieter Jungnickel and Bernhard Schmidt
- Proc. Amer. Math. Soc. 130 (2002), 1473-1476
- DOI: https://doi.org/10.1090/S0002-9939-01-06388-2
- Published electronically: December 20, 2001
- PDF | Request permission
Abstract:
Let $G$ be an abelian collineation group of order $n^2$ of a projective plane of order $n$. We show that $n$ must be a prime power, and that the $p$-rank of $G$ is at least $b+1$ if $n=p^b$ for an odd prime $p$.References
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Peter Dembowski and T. G. Ostrom, Planes of order $n$ with collineation groups of order $n^{2}$, Math. Z. 103 (1968), 239–258. MR 226486, DOI 10.1007/BF01111042
- Peter Dembowski and Fred Piper, Quasiregular collineation groups of finite projective planes, Math. Z. 99 (1967), 53–75. MR 215741, DOI 10.1007/BF01118689
- Howard Levi, On the values assumed by polynomials, Bull. Amer. Math. Soc. 45 (1939), 570–575. MR 54, DOI 10.1090/S0002-9904-1939-07038-9
- Michael J. Ganley and Edward Spence, Relative difference sets and quasiregular collineation groups, J. Combinatorial Theory Ser. A 19 (1975), no. 2, 134–153. MR 376392, DOI 10.1016/s0097-3165(75)80003-3
- S. L. Ma, Planar functions, relative difference sets, and character theory, J. Algebra 185 (1996), no. 2, 342–356. MR 1417375, DOI 10.1006/jabr.1996.0329
- Alexander Pott, Finite geometry and character theory, Lecture Notes in Mathematics, vol. 1601, Springer-Verlag, Berlin, 1995. MR 1440858, DOI 10.1007/BFb0094449
Bibliographic Information
- Aart Blokhuis
- Affiliation: Department of Mathematics and Computing Science, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, Netherlands
- Email: aart@win.tue.nl
- Dieter Jungnickel
- Affiliation: Institut für Mathematik, Universität Augsburg, Universitätsstraße 14, 86135 Augsburg, Germany
- Email: jungnickel@math.uni-augsburg.de
- Bernhard Schmidt
- Affiliation: Institut für Mathematik, Universität Augsburg, Universitätsstraße 14, 86135 Augsburg, Germany
- Email: schmidt@math.uni-augsburg.de
- Received by editor(s): November 17, 2000
- Published electronically: December 20, 2001
- Communicated by: Stephen D. Smith
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1473-1476
- MSC (2000): Primary 51E15; Secondary 05B10
- DOI: https://doi.org/10.1090/S0002-9939-01-06388-2
- MathSciNet review: 1879972