Critical points of the area functional of a complex closed curve on the manifold of Kähler metrics
HTML articles powered by AMS MathViewer
- by Abel Castorena
- Proc. Amer. Math. Soc. 130 (2002), 1377-1381
- DOI: https://doi.org/10.1090/S0002-9939-01-06389-4
- Published electronically: December 20, 2001
- PDF | Request permission
Abstract:
We consider a compact complex manifold $M$ of dimension $n$ that admits Kähler metrics and we assume that $C\hookrightarrow M$ is a closed complex curve. We denote by $\mathcal {KC}(1)$ the space of classes of Kähler forms $[\omega ]\in H^{1,1}(M,\mathbb {R})$ that define Kähler metrics of volume 1 on $M$ and define $\mathbf {A}_{C}:\mathcal {KC}(1)\to \mathbb {R}$ by $\mathbf {A}_{C}([\omega ])=\int _{C} \omega =\text {area of }C\text { in the induced metric by }\omega$. We show how the Riemann-Hodge bilinear relations imply that any critical point of $\mathbf {A}_{C}$ is the strict global minimum and we give conditions under which there is such a critical point $[\omega ]$: A positive multiple of $[\omega ]^{n-1}\in H^{2n-2}(M,\mathbb {R})$ is the Poincaré dual of the homology class of $C$. Applying this to the Abel-Jacobi map of a curve into its Jacobian, $C\hookrightarrow J(C)$, we obtain that the Theta metric minimizes the area of $C$ within all Kähler metrics of volume 1 on $J(C)$.References
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). MR 0111056
Bibliographic Information
- Abel Castorena
- Affiliation: CIMAT, AP. 402, CP. 36000 Guanajuato, Gto. Mexico
- MR Author ID: 689448
- Email: abel@cimat.mx
- Received by editor(s): November 2, 2000
- Published electronically: December 20, 2001
- Communicated by: Mohan Ramachandran
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1377-1381
- MSC (2000): Primary 32Q15
- DOI: https://doi.org/10.1090/S0002-9939-01-06389-4
- MathSciNet review: 1879960