On an adjoint functor to the Thom functor
HTML articles powered by AMS MathViewer
- by Yuli B. Rudyak
- Proc. Amer. Math. Soc. 130 (2002), 1503-1506
- DOI: https://doi.org/10.1090/S0002-9939-01-06415-2
- Published electronically: December 20, 2001
- PDF | Request permission
Abstract:
We construct a right adjoint functor to the Thom functor, i.e., to the functor which assigns the Thom space $T\xi$ to a vector bundle $\xi$.References
- Jon Beck, On $H$-spaces and infinite loop spaces, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 139–153. MR 0248829
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547
- A. K. Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987), no. 2, 361–394. MR 882428, DOI 10.2307/2374579
- E. H. Brown Jr. and F. P. Peterson, A universal space for normal bundles of $n$-manifolds, Comment. Math. Helv. 54 (1979), no. 3, 405–430. MR 543340, DOI 10.1007/BF02566284
- Ralph L. Cohen, The immersion conjecture for differentiable manifolds, Ann. of Math. (2) 122 (1985), no. 2, 237–328. MR 808220, DOI 10.2307/1971304
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247, DOI 10.1007/978-1-4757-4008-0
- Jean Lannes, La conjecture des immersions (d’après R. L. Cohen, E. H. Brown, F. P. Peterson et al.), Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 331–346 (French). MR 689538
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547
- Richard R. Patterson and Robert E. Stong, Orientability of bundles, Duke Math. J. 39 (1972), 619–622. MR 315699
- Yu. B. Rudyak, The spectra $k$ and $kO$ are not Thom spectra, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp. 475–483. MR 1603140, DOI 10.1090/pspum/063/1603140
- Yuli B. Rudyak, On Thom spectra, orientability, and cobordism, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. With a foreword by Haynes Miller. MR 1627486
Bibliographic Information
- Yuli B. Rudyak
- Affiliation: Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany
- Address at time of publication: Department of Mathematics, University of Florida, Gainesville, Florida 32611-8105
- Email: rudyak@mathi.uni-heidelberg.de, rudyak@math.ufl.edu
- Received by editor(s): April 2, 1999
- Received by editor(s) in revised form: March 26, 2000
- Published electronically: December 20, 2001
- Communicated by: Ralph Cohen
- © Copyright 2001 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 130 (2002), 1503-1506
- MSC (2000): Primary 55R25; Secondary 18A40
- DOI: https://doi.org/10.1090/S0002-9939-01-06415-2
- MathSciNet review: 1879976